5
Views
31
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

An ATP/ADP-Dependent Molecular Switch Regulates the Stability of p53-DNA Complexes

&
Pages 7501-7510 | Received 14 May 1999, Accepted 27 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Bakalkin, G., G. Selivanova, T. Yakovleva, E. Kiseleva, E. Kashuba, K. Magnusson, L. Szekely, G. Klein, L. Terenius, and J. Wiman 1995. p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain. Nucleic Acids Res. 23:362–369.
  • Balagurumoorthy, P., H. Sakamoto, M. S. Lewis, N. Zambrano, G. M. Clore, A. M. Gronenborn, E. Appella, and J. Harrington 1995. Four p53 DNA-binding domain peptides bind natural p53-response elements and bend the DNA. Proc. Natl. Acad. Sci. USA 92:8591–8595.
  • Bargonetti, J., J. J. Manfredi, X. Chen, D. R. Marshak, and J. Prives 1993. A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein. Genes Dev. 7:2565–2574.
  • Brain, R., and J. Jenkins 1994. Human p53 directs DNA strand reassociation and is photolabelled by 8-azido ATP. Oncogene 9:1775–1780.
  • Cho, Y., S. Gorina, P. D. Jeffrey, and J. Pavletich 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenicmutations. Science 265:346–355.
  • Clore, G. M., J. Ernst, R. Clubb, J. G. Omichinski, W. M. Kennedy, K. Sakaguchi, E. Appella, and J. Gronenborn 1995. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat. Struct. Biol. 2:321–333.
  • Clore, G. M., J. G. Omichinski, K. Sakaguchi, N. Zambrano, H. Sakamoto, E. Appella, and J. Gronenborn 1994. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science 265:386–391.
  • Davison, T. S., P. Yin, E. Nie, C. H. Arrowsmith 1998. Oligomerisation and p53 function, p. 40 Abstracts of the 9th p53 Workshop 1998.
  • Davison, T. S., P. Yin, E. Nie, C. Kay, and J. Arrowsmith 1998. Characterisation of the oligomerisation defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome. Oncogene 17:651–656.
  • Fishel, R. 1998. Mismatch repair, molecular switches, and signal transduction. Genes Dev. 12:2096–2101.
  • Ford, J. M., and J. Hanawalt 1995. Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA-repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc. Natl. Acad. Sci. USA 92:8876–8880.
  • Funk, W. D., D. J. Pak, R. H. Karas, W. E. Wright, and J. Shay 1992. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12:2866–2871.
  • Gottlieb, T., and J. Oren 1996. p53 in growth-control and neoplasia. Biochim. Biophys. Acta Rev. Cancer 1287:77–102.
  • Gradia, S., S. Acharya, and J. Fishel 1997. The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell 91:995–1005.
  • Hall, A. R., and J. Milner 1997. Specific p53-DNA complexes contain an mdm2-related protein. Oncogene 14:1371–1376.
  • Jayaraman, L., and J. Prives 1995. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the C-terminus. Cell 81:1021–1029.
  • Jeffry, P. D., S. Gorina, and J. Pavletich 1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267:1498–1502.
  • Kalbitzer, H. R., R. S. Goody, and J. Wittinghofer 1984. Electron-paramagnetic-resonance studies of manganese(II) complexes with elongation factor Tu from Bacillus stearothermophilus. Observation of a GTP hydrolysis intermediate state complex. Eur. J. Biochem. 141:591–597.
  • Kastan, M. 1996. Signalling to p53—where does it all start. Bioessays 18:617–619.
  • Ko, L. J., and J. Prives 1996. p53—puzzle and paradigm. Genes Dev. 10:1054–1072.
  • Kondratov, R. V., E. N. Pugacheva, N. V. Kuznetsov, V. S. Prasolov, B. P. Kopnin, and J. Chumakov 1996. Human adenosine-deaminase gene contains p53-responsive element. Proc. Russian Acad. Sci. 346:260–262.
  • Lee, S., B. Elenbaas, A. Levine, and J. Griffith 1995. p53 and its 14 kDa C-terminal domain recognize primary DNA-damage in the form of insertion/deletion mismatches. Cell 81:1013–1020.
  • Lee, S. M., L. Cavallo, and J. Griffith 1997. Human p53 binds Holliday junctions strongly and facilitates their cleavage. J. Biol. Chem. 272:7532–7539.
  • Lee, W., T. S. Harvey, Y. Yin, P. Yau, D. Litchfield, and J. Arrowsmith 1994. Solution structure of the tetrameric minimum transforming domain of p53. Nat. Struct. Biol. 1:877–890.
  • Leveillard, T., L. Andera, N. Bissonnette, L. Schaeffer, L. Bracco, J. M. Egly, and J. Wasylyk 1996. Functional interactions between p53 and the TFIIH complex are affected by tumor-associated mutations. EMBO J. 15:1615–1624.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Linke, S., K. Clarkin, A. Dileonardo, A. Tsou, and J. Wahl 1996. A reversible, p53-dependent G(0)/G(1) cell-cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev. 10:934–947.
  • Lomax, M. E., D. M. Barnes, T. R. Hupp, S. M. Picksley, and J. Camplejohn 1998. Characterisation of p53 oligomerisation domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene 17:643–649.
  • McKay, B. C., M. A. Francis, and J. Rainbow 1997. Wildtype p53 is required for heat shock and ultraviolet light enhanced repair of a UV-damaged reporter gene. Carcinogenesis 18:245–249.
  • McLure, K. G., and J. Lee 1998. How p53 binds DNA as a tetramer. EMBO J. 17:3342–3350.
  • Mee, T., and J. Milner. 1998. Unpublished data.
  • Miller, M., J. Lubkowski, J. K. M. Rao, A. T. Danishefsky, J. G. Omichinski, K. Sakaguchi, H. Sakamoto, E. Appella, A. M. Gronenborn, and J. Clore 1996. The oligomerization domain of p53: crystal structure of the trigonal form. FEBS Lett. 99:166–170.
  • Milner, J., E. A. Medcalf, and J. Cook 1991. The tumor suppressor p53: analysis of wild-type and mutant complexes. Mol. Cell. Biol. 11:12–19.
  • Molinari, M., A. L. Okorokov, and J. Milner 1996. Interaction with damaged DNA induces selective proteolytic cleavage of p53 to yield 40 kDa and 35 kDa fragments competent for sequence-specific DNA binding. Oncogene 13:2077–2086.
  • Nagaich, A. K., V. B. Zhurkin, H. Sakamoto, A. A. Gorin, G. M. Clore, A. M. Gronenborn, E. Appella, and J. Harrington 1997. Architectural accommodation in the complex of four p53 DNA binding domain peptides with the p21/waf1/cip1 DNA response element. J. Biol. Chem. 272:14830–14841.
  • Nelson, W. G., and J. Kastan 1994. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol. 14:1815–1823.
  • Oberosler, P., P. Hloch, U. Ramsperger, and J. Stahl 1993. p53-catalyzed annealing of complementary single-stranded nucleic acids. EMBO J. 12:2389–2396.
  • Okorokov, A. L., F. Ponchel, and J. Milner 1997. Induced N- and C-terminal cleavage of p53: a core fragment of p53, generated by interaction with damaged DNA, promotes cleavage of the N-terminus of full-length p53, whereas ssDNA induces C-terminal cleavage of p53 EMBO J. 16:6008–6017.
  • Pavletich, N. P., K. A. Chambers, and J. Pabo 1993. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev. 7:2556–2564.
  • Reed, M., B. Woelker, P. Wang, Y. Wang, M. Anderson, and J. Tegtmeyer 1995. The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc. Natl. Acad. Sci. USA 92:9455–9459.
  • Sancar, A., and J. Hearst 1993. Molecular matchmakers. Science 259:1415–1420.
  • Sherley, J. L. 1991. Guanine nucleotide biosynthesis is regulated by the cellular p53 concentration. J. Biol. Chem. 266:24815–24828.
  • Sprang, S. R. 1997. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66:639–678.
  • Temeles, G. L., J. B. Gibs, J. S. D’Alonzo, I. S. Sigal, and J. Scolnick 1985. Yeast and mammalian ras proteins have conserved biochemical properties. Nature 313:700–703.
  • Venkatachalam, S., S. Yu-Ping, S. N. Jones, H. Vogel, A. Bradley, D. Pinkel, and J. Donehower 1998. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J. 17:4657–4667.
  • Walker, J. E., M. Saraste, M. J. Runswick, and J. Gay 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945–951.
  • Wang, X., W. Vermeulen, J. D. Coursen, M. Gibson, S. E. Lupold, K. Forrester, G. W. Xu, L. Elmore, H. Yeh, J. H. J. Hoeijmakers, and J. Harris 1996. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 10:1219–1232.
  • Wang, X. W., H. Yeh, L. Schaeffer, R. Roy, V. Moncollin, J. M. Egly, Z. Wang, E. C. Friedberg, M. K. Evans, B. G. Taffe, V. A. Bohr, G. Weeda, J. H. J. Hoeijmakers, K. Forrester, and J. Harris 1995. p53 modulation of TFIIH-associated nucleotide excision-repair activity. Nat. Genet. 10:188–195.
  • Wang, Y., M. Reed, P. Wang, J. E. Stenger, G. Mayr, M. E. Anderson, J. F. Schwedes, and J. Tegtmeyer 1993. p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Dev. 7:2575–2586.
  • Waterman, J., J. Shenk, and J. Halazonetis 1995. The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA-binding. EMBO J. 14:512–519.
  • Yamauchi, M., and J. Baker 1998. An ATP-ADP switch in MuB controls progression of the Mu transposition pathway. EMBO J. 15:5509–5518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.