14
Views
56
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Gal3p-Gal80p-Gal4p Transcription Switch of Yeast: Gal3p Destabilizes the Gal80p-Gal4p Complex in Response to Galactose and ATP

, , , , , , & show all
Pages 7828-7840 | Received 24 Mar 1999, Accepted 10 Aug 1999, Published online: 28 Mar 2023

REFERENCES

  • Adams, A., D. E. Gottschling, C. A. Kaiser, T. Stearns 1997. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Amberg, D. C., D. Botstein, and J. Beasley 1995. Precise gene disruption in Saccharomyces cerevisiae by double fusion polymerase chain reaction. Yeast 11:1275–1280.
  • Ansari, A. Z., R. J. Reece, and J. Ptashne 1998. A transcriptional activating region with two contrasting modes of protein interaction. Proc. Natl. Acad. Sci. USA 95:13543–13548.
  • Barberis, A., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinagel, C. Bamdad, G. Sigal, and J. Ptashne 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359–368.
  • Bartel, P. L., and J. Fields 1995. Analyzing protein-protein interactions using two-hybrid system. Methods Enzymol. 254:241–263.
  • Bhat, P. J., and J. Hopper 1992. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Mol. Cell. Biol. 12:2701–2707.
  • Bhat, P. J., D. Oh, and J. Hopper 1990. Analysis of the GAL3 signal transduction pathway activating GAL4 protein-dependent transcription in Saccharomyces cerevisiae. Genetics 125:281–291.
  • Blank, T. E., M. P. Woods, C. M. Lebo, P. Xin, and J. Hopper 1997. Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:2566–2575.
  • Boeke, J. D., F. LaCroute, and J. Fink 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Bram, R. J., and J. Kornberg 1985. Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc. Natl. Acad. Sci. USA 82:43–47.
  • Brent, R., and J. Ptashne 1985. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43:729–736.
  • Broach, J. R. 1979. Galactose regulation in Saccharomyces cerevisiae. The enzymes encoded by the GAL7, 10, 1 cluster are co-ordinately controlled and separately translated. J. Mol. Biol. 131:41–53.
  • Carey, M., H. Kakidani, J. Leatherwood, F. Mostashari, and J. Ptashne 1989. An amino-terminal fragment of GAL4 binds DNA as a dimer. J. Mol. Biol. 209:423–432.
  • Cavender, J. F., A. Conn, M. Epler, H. Lacko, and J. Tevethia 1995. Simian virus 40 large T antigen contains two independent activities that cooperate with a ras oncogene to transform rat embryo fibroblasts. J. Virol. 69:923–934.
  • Chen, D. C., B. C. Yang, and J. Kuo 1992. One-step transformation of yeast in stationary phase. Curr. Genet. 21:83–84.
  • Czyz, M., M. M. Nagiec, and J. Dickson 1993. Autoregulation of GAL4 transcription is essential for rapid growth of Kluyveromyces lactis on lactose and galactose. Nucleic Acids Res. 21:4378–4382.
  • Denis, C. L., J. Ferguson, and J. Young 1983. mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J. Biol. Chem. 258:1165–1171.
  • Ding, W. V., and J. Johnston 1997. The DNA binding and activation domains of Gal4p are sufficient for conveying its regulatory signals. Mol. Cell. Biol. 17:2538–2549.
  • Douglas, H., and J. Pelroy 1963. A gene controlling inducibility of the galactose pathway enzymes in Saccharomyces. Biochim. Biophys. Acta 68:155–156.
  • Douglas, H. C., and J. Hawthorne 1972. Uninducible mutants in the gal i locus of Saccharomyces cerevisiae. J. Bacteriol. 109:1139–1143.
  • Erhart, E., and J. Hollenberg 1981. Curing of Saccharomyces cerevisiae 2-μm DNA by transformation. Curr. Genet. 3:83–89.
  • Erhart, E., and J. Hollenberg 1983. The presence of a defective LEU2 gene on 2 mu DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J. Bacteriol. 156:625–635.
  • Fujiki, M., and J. Verner 1993. Coupling of cytosolic protein synthesis and mitochondrial protein import in yeast. Evidence for cotranslational import in vivo. J. Biol. Chem. 268:1914–1920.
  • Gadhavi, P. L. 1998. Structural dissection of the DNA-binding domain of the yeast transcriptional activator GAL4 reveals an alpha-helical region responsible for dimerization. J. Protein Chem. 17:591–598.
  • Gietz, D., A. St. Jean, R. A. Woods, and J. Schiestl 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20:1425.
  • Gietz, R. D., and J. Sugino 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base-pair restriction sites. Gene 74:527–534.
  • Giniger, E., S. M. Varnum, and J. Ptashne 1985. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774.
  • Guldener, U., S. Heck, T. Fielder, J. Beinhauer, and J. Hegemann 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24:2519–2524.
  • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and J. Elledge 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816.
  • Igarashi, M., T. Segawa, Y. Nogi, Y. Suzuki, and J. Fukasawa 1987. Autogenous regulation of the Saccharomyces cerevisiae regulatory gene GAL80. Mol. Gen. Genet. 207:273–279.
  • Irani, M., W. E. Taylor, and J. Young 1987. Transcription of the ADH2 gene in Saccharomyces cerevisiae is limited by positive factors that bind competitively to its intact promoter region on multicopy plasmids. Mol. Cell. Biol. 7:1233–1241.
  • Johnston, M., M. Carlson 1992. Regulation of carbon and phosphate utilization II: Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Johnston, M., and J. Dover 1988. Mutational analysis of the GAL4-encoded transcriptional activator protein of Saccharomyces cerevisiae. Genetics 120:63–74.
  • Johnston, S. A., and J. Hopper 1982. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc. Natl. Acad. Sci. USA 79:6971–6975.
  • Johnston, S. A., J. M. Salmeron Jr., and J. Dincher 1987. Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50:143–146.
  • Keegan, L., G. Gill, and J. Ptashne 1986. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231:699–704.
  • Koh, S. S., A. Z. Ansari, M. Ptashne, and J. Young 1998. An activator target in the RNA polymerase II holoenzyme. Mol. Cell 1:895–904.
  • Leuther, K. K., and J. Johnston 1992. Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science 256:1333–1335.
  • Leuther, K. K., J. M. Salmeron, and J. Johnston 1993. Genetic evidence that an activation domain of GAL4 does not require acidity and may form a beta sheet. Cell 72:575–585.
  • Lohr, D., P. Venkov, and J. Zlatanova 1995. Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J. 9:777–787.
  • Lue, N. F., D. I. Chasman, A. R. Buchman, and J. Kornberg 1987. Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol. Cell. Biol. 7:3446–3451.
  • Ma, J., and J. Ptashne 1987. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50:137–142.
  • Ma, J., and J. Ptashne 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Ma, J., and J. Ptashne 1987. A new class of yeast transcriptional activators. Cell 51:113–119.
  • Marmorstein, R., M. Carey, M. Ptashne, and J. Harrison 1992. DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356:408–414.
  • Melcher, K., and J. Johnston 1995. GAL4 interacts with TATA-binding protein and coactivators. Mol. Cell. Biol. 15:2839–2848.
  • Meyer, J., A. Walker-Jonah, and J. Hollenberg 1991. Galactokinase encoded by GAL1 is a bifunctional protein required for induction of the GAL genes in Kluyveromyces lactis and is able to suppress the Gal3 phenotype in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:5454–5461.
  • Mylin, L. M., K. J. Hofmann, L. D. Schultz, and J. Hopper 1990. Regulated GAL4 expression cassette providing controllable and high-level output from high-copy galactose promoters in yeast. Methods Enzymol. 185:297–308.
  • Nogi, Y. 1986. GAL3 gene product is required for maintenance of the induced state of the GAL cluster genes in Saccharomyces cerevisiae. J. Bacteriol. 165:101–106.
  • Nogi, Y., and J. Fukasawa 1984. Nucleotide sequence of the yeast regulatory gene GAL80. Nucleic Acids Res. 12:9287–9298.
  • Nogi, Y., K. Matsumoto, A. Toh-e, and J. Oshima 1977. Interaction of super-repressible and dominant constitutive mutations for the synthesis of galactose pathway enzymes in Saccharomyces cerevisiae. Mol. Gen. Genet. 152:137–144.
  • Pan, T., Y. D. Halvorsen, R. C. Dickson, and J. Coleman 1990. The transcription factor LAC9 from Kluyveromyces lactis-like GAL4 from Saccharomyces cerevisiae forms a Zn(II)2Cys6 binuclear cluster. J. Biol. Chem. 265:21427–21429.
  • Peterson, G. L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356.
  • Platt, A., and J. Reece 1998. The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J. 17:4086–4091.
  • Post-Beittenmiller, M. A., R. W. Hamilton, and J. Hopper 1984. Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1238–1245.
  • Reece, R. J., and J. Platt 1997. Signaling activation and repression of RNA polymerase II transcription in yeast. Bioessays 19:1001–1010.
  • Riley, M. I., J. E. Hopper, S. A. Johnston, and J. Dickson 1987. GAL4 of Saccharomyces cerevisiae activates the lactose-galactose regulon of Kluyveromyces lactis and creates a new phenotype: glucose repression of the regulon. Mol. Cell. Biol. 7:780–786.
  • Rose, M. D., F. Winston, P. Heiter 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and J. Fink 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Sadowski, I., C. Costa, and J. Dhanawansa 1996. Phosphorylation of Gal4p at a single C-terminal residue is necessary for galactose-inducible transcription. Mol. Cell. Biol. 16:4879–4887.
  • Sadowski, I., J. Ma, S. Triezenberg, and J. Ptashne 1988. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335:563–564.
  • Salmeron, J. M. Jr., and J. Johnston 1986. Analysis of the Kluyveromyces lactis positive regulatory gene LAC9 reveals functional homology to, but sequence divergence from the Saccharomyces cerevisiae GAL4 gene. Nucleic Acids Res. 14:7767–7781.
  • Salmeron, J. M. Jr., S. D. Langdon, and J. Johnston 1989. Interaction between transcriptional activator protein LAC9 and negative regulatory protein GAL80. Mol. Cell. Biol. 9:2950–2956.
  • Salmeron, J. M. Jr., K. K. Leuther, and J. Johnston 1990. GAL4 mutations that separate the transcriptional activation and GAL80-interactive functions of the yeast GAL4 protein. Genetics 125:21–27.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Sil, A. K., et al. Unpublished data.
  • Silver, P. A., L. P. Keegan, and J. Ptashine 1984. Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization. Proc. Natl. Acad. Sci. USA 81:5951–5955.
  • Stone, G., and J. Sadowski 1993. GAL4 is regulated by a glucose-responsive functional domain. EMBO J. 12:1375–1385.
  • Suzuki-Fujimoto, T., M. Fukuma, K. I. Yano, H. Sakurai, A. Vonika, S. A. Johnston, and J. Fukasawa 1996. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Mol. Cell. Biol. 16:2504–2508.
  • Torchia, T. E., R. W. Hamilton, C. L. Cano, and J. Hopper 1984. Disruption of regulatory gene GAL80 in Saccharomyces cerevisiae: effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Mol. Cell. Biol. 4:1521–1527.
  • Torchia, T. E., and J. Hopper 1986. Genetic and molecular analysis of the GAL3 gene in the expression of the galactose/melibiose regulon of Saccharomyces cerevisiae. Genetics 113:229–246.
  • Tornow, J., and J. Santangelo 1990. Efficient expression of the Saccharomyces cerevisiae glycolytic gene ADH1 is dependent upon a cis-acting regulatory element (UASRPG) found initially in genes encoding ribosomal proteins. Gene 90:79–85.
  • Triezenberg, S. J. Personal communication.
  • Verner, K., and J. Weber 1989. Protein import into mitochondria in a homologous yeast in vitro system. J. Biol. Chem. 264:3877–3879.
  • Vojtek, A. B., and J. Hollenberg 1995. Ras-Raf interaction: two-hybrid analysis. Methods Enzymol. 255:331–342.
  • Webster, T. D., and J. Dickson 1988. The organization and transcription of the galactose gene cluster of Kluyveromyces lactis. Nucleic Acids Res. 16:8011–8028.
  • Woods, M. P., and J. E. Hopper. Unpublished data.
  • Wu, Y., R. J. Reece, and J. Ptashne 1996. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 15:3951–3963.
  • Yano, K., and J. Fukasawa 1997. Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:1721–1726.
  • Yocum, R. R., and J. Johnston 1984. Molecular cloning of the GAL80 gene from Saccharomyces cerevisiae and characterization of a gal80 deletion. Gene 32:75–82.
  • Zachariae, W., and J. Breunig 1993. Expression of the transcriptional activator LAC9 (KlGAL4) in Kluyveromyces lactis is controlled by autoregulation. Mol. Cell. Biol. 13:3058–3066.
  • Zenke, F. T., R. Engles, V. Vollenbroich, J. Meyer, C. P. Hollenberg, and J. Breunig 1996. Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science 272:1662–1665 (Erratum, 273:417, 1996.)
  • Zenke, F. T., L. Kapp, and J. Breunig 1999. Regulated phosphorylation of the Gal4p inhibitor Gal80p of Kluyveromyces lactis revealed by mutational analysis. Biol. Chem. 380:419–430.
  • Zenke, F. T., W. Zachariae, A. Lunkes, and J. Breunig 1993. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon. Mol. Cell. Biol. 13:7566–7576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.