56
Views
177
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Phosphorylation of Human Estrogen Receptor α by Protein Kinase A Regulates Dimerization

, , &
Pages 1002-1015 | Received 18 Sep 1998, Accepted 29 Oct 1998, Published online: 28 Mar 2023

REFERENCES

  • Ali, S., D. Metzger, J.-M. Bornert, and J. Chambon 1993. Phosphorylation of the human oestrogen receptor: identification of a phosphorylation site required for trans-activation. EMBO J. 12:1153–1160.
  • Ali, S., Y. Lutz, J.-P. Bellocq, M.-P. Chenard-Neu, N. Rouyer, and J. Metzger 1993. Production and characterisation of monoclonal antibodies recognising defined regions of the human oestrogen receptor. Hybridoma 12:391–405.
  • Arnold, S. F., J. D. Obourn, H. Jaffe, and J. Notides 1994. Serine 167 is the major estradiol-induced phosphorylation site on the human estrogen receptor. Mol. Endocrinol. 8:1208–1214.
  • Arnold, S. F., J. D. Obourn, H. Jaffe, and J. Notides 1995. Phosphorylation of the human estrogen receptor by mitogen-activated protein kinase and casein kinase II: consequence on DNA binding. J. Steroid Biochem. Mol. Biol. 55:163–172.
  • Arnold, S. F., J. D. Obourn, M. R. Yudt, T. H. Carter, and J. Notides 1995. In vivo and in vitro phosphorylation of the human estrogen receptor. J. Steroid Biochem. Mol. Biol. 52:159–171.
  • Arnold, S. F., J. D. Obourn, H. Jaffe, and J. Notides 1995. Phosphorylation of the human estrogen receptor on tyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol. Endocrinol. 9:24–33.
  • Arnold, S. F., D. P. Vorojeikina, and J. Notides 1995. Phosphorylation of tyrosine 537 on the human estrogen receptor is required for binding to an estrogen response element. J. Biol. Chem. 270:30205–30212.
  • Arnold, S. F., M. Melamed, D. P. Vorojeikina, A. C. Notides, and J. Sasson 1997. Estradiol-binding mechanism and binding capacity of the human estrogen receptor is regulated by tyrosine phosphorylation. Mol. Endocrinol. 11:48–53.
  • Aronica, S. M., and J. Katzenellenbogen 1993. Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclin adenosine monophosphate and insulin-like growth factor-1. Mol. Endocrinol. 7:743–752.
  • Auricchio, F. 1989. Phosphorylation of steroid receptors. J. Steroid Biochem. 32:613–622.
  • Bai, W., and J. Weigel 1996. Phosphorylation of Ser-211 in the chicken progesterone receptor modulates its transcriptional activity. J. Biol. Chem. 271:12801–12806.
  • Beato, M. 1989. Gene regulation by steroid hormones. Cell 56:335–344.
  • Beato, M., P. Herlich, and J. Schutz 1995. Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857.
  • Berry, M., D. Metzger, and J. Chambon 1990. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J. 9:2811–2818.
  • Berthois, Y., J. A. Katzenellenbogen, and J. Katzenellenbogen 1986. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. USA 89:1218–1222.
  • Boyle, W. J., P. van der Geer, and J. Hunter 1991. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201:110–148.
  • Brzozowski, A. M., A. C. W. Pike, Z. Dauter, R. E. Hubbard, T. Bonn, O. Engstrom, L. Ohman, G. L. Green, J.-A. Gustafsson, and J. Carlquist 1997. Molecular basis of agonism and antagonism of the oestrogen receptor. Nature 389:753–758.
  • Budhram-Mahadeo, V., M. Parker, and J. Latchman 1998. POU transcription factors Brn-3a and Brn-3b interact with the estrogen receptor and differentially regulate transcriptional activity via an estrogen response element. Mol. Cell. Biol. 18:1029–1041.
  • Bunone, G., P.-A. Briand, R. J. Miksicek, and J. Picard 1996. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 15:2174–2183.
  • Castoria, G., A. Migliaccio, S. Green, M. Di-Domenico, P. Chambon, and J. Aurrichio 1993. Properties of a purified estradiol-dependent calf uterus tyrosine kinase. Biochemistry 32:1740–1750.
  • Cho, H., and J. Katzenellenbogen 1993. Synergistic activation of estrogen receptor-mediated transcription by estradiol and protein kinase activators. Mol. Endocrinol. 7:441–452.
  • Cowley, S. M., S. Hoare, S. Mosselman, and J. Parker 1997. Estrogen receptor α and β form heterodimers on DNA. J. Biol. Chem. 272:19858–19862.
  • Dauvois, S., P. S. Danielian, R. White, and J. Parker 1993. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J. Cell Sci. 103:1377–1388.
  • Dauvois, S., P. S. Danielian, R. White, and J. Parker 1992. Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc. Natl. Acad. Sci. USA 89:4037–4041.
  • DeFranco, D. B., M. Qi, K. C. Boffor, M. J. Garabedian, and J. Brautigan 1991. Protein phosphatase types 1 and/or 2A regulate nucleocytoplasmic shuttling of glucocorticoid receptors. Mol. Endocrinol. 5:1215–1528.
  • El-Tanani, M. K., and J. Green 1997. Two separate mechanisms for ligand-independent activation of the estrogen receptor. Mol. Endocrinol. 11:928–937.
  • Fawell, S. E., R. White, S. Hoare, M. Sydenham, M. Page, and J. Parker 1990. Inhibition of estrogen receptor-DNA binding by the “pure” antiestrogen ICI 164,384 appears to be mediated by impaired receptor dimerization. Proc. Natl. Acad. Sci. USA 8:6883–6887.
  • Gaub, M.-P., M. Bellard, I. Scheuer, P. Chambon, and J. Sassone-Corsi 1990. Activation of the ovalbumin gene by the estrogen receptor involves the fos-jun complex. Cell 63:1267–1276.
  • Gibson, M. K., L. A. Nemmers, W. C. Beckman, V. L. Davis, S. W. Curtis, and J. Korach 1991. The mechanism of ICI 164,384 antiestrogenicity involves rapid loss of estrogen receptor in uterine tissue. Endocrinology 129:2000–2010.
  • Gilbert, D. M., R. Losson, and J. Chambon 1992. Ligand dependence of estrogen receptor induced changes in chromatin structure. Nucleic Acids Res. 20:4525–4531.
  • Glineur, C., M. Zenke, H. Beug, and J. Ghysdael 1990. Phosphorylation of the v-erbA protein is required for its function as an oncogene. Genes Dev. 4:1663–1676.
  • Goldberg, Y., C. Glineur, J. C. Gesquiere, A. Ricouart, J. Sap, B. Vennstrom, and J. Ghysdael 1988. Activation of protein kinase C or cAMP-dependent protein kinase increases phosphorylation of the c-erbA-encoded thyroid hormone receptor and of the v-erbA-encoded protein. EMBO J. 7:2425–2433.
  • Green, S., I. Isseman, and J. Sheer 1988. A versatile in vivo and in vitro eukaryotic expression vector for protein engineering. Nucleic Acids Res. 10:369–370.
  • Gronemeyer, H. 1991. Transcription activation by estrogen and progesterone receptors. Annu. Rev. Biochem. 25:89–123.
  • Hidaka, H., M. Watanabe, and J. Kobayashi 1991. Properties and use of H-series compounds as protein kinase inhibitors. Methods Enzymol. 201:328–339.
  • Hsieh, J.-C., P. W. Jurutka, M. A. Galligan, C. M. Terpenning, C. A. Haussler, D. S. Samuels, Y. Shimizu, N. Shimizu, and J. Haussler 1991. Phosphorylation of the human vitamin D receptor by protein kinase C. Biochemical and functional evaluation of the serine 51 recognition site. Proc. Natl. Acad. Sci. USA 88:9315–9319.
  • Hsieh, J.-C., P. W. Jurutka, N. Shigeo, M. A. Galligan, C. A. Haussler, Y. Shimizu, N. Shimizu, G. K. Whitfield, and J. Haussler 1993. Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its transactivation function. J. Biol. Chem. 268:15118–15126.
  • Hsu, S. C., and J. de Franco 1995. Selectivity of cell cycle regulation of glucocorticoid receptor function. J. Biol. Chem. 270:3359–3364.
  • Hu, J. M., J. E. Bodwell, and J. Munck 1994. Cell cycle-dependent glucocorticoid receptor phosphorylation and activity. Mol. Endocrinol. 8:1709–1713.
  • Hunter, T., and J. Karin 1992. The regulation of transcription by phosphorylation. Cell 70:375–387.
  • Ignar-Trowbridge, D., C. T. Teng, K. A. Ross, M. G. Parker, K. S. Korach, and J. McLachlan 1993. Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol. Endocrinol. 7:992–998.
  • Ince, B. A., M. M. Montano, and J. Katzenellenbogen 1994. Activation of transcriptionally inactive human estrogen receptors by cyclin adenosine 3′,5′-monophosphate and ligands including antiestrogens. Mol. Endocrinol. 8:1397–1406.
  • Jackson, S. P. 1992. Regulating transcription factor activity by phosphorylation. Trends Cell Biol. 2:104–108.
  • Joel, P. B., A. M. Traish, and J. Lannigan 1995. Estradiol and phorbol ester cause phosphorylation of serine 118 in the human estrogen receptor. Mol. Endocrinol. 9:1041–1052.
  • Joel, P. B., J. Smith, T. W. Sturgill, T. L. Fisher, J. Blenis, and J. Lannigan 1998. pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol. Cell. Biol. 18:1978–1984.
  • Karin, M. 1994. Signal transduction from the cell surface to the nucleus through phosphorylation of transcription factors. Curr. Opin. Cell Biol. 6:415–424.
  • Kato, S., E. Endoh, Y. Masuhiro, T. Kitamoto, S. Uchiyama, H. Sasaki, S. Masushige, Y. Gotoh, E. Nishida, H. Kawashima, D. Metzger, and J. Chambon 1995. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494.
  • Kladde, M. P., M. Xu, and J. Simpson 1996. Direct study of DNA-protein interactions in repressed and active chromatin in living cells. EMBO J. 15:6290–6300.
  • Krust, A., S. Green, P. Argos, V. Kumar, P. Walter, J.-M. Bornert, and J. Chambon 1986. The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors. EMBO J. 5:891–897.
  • Kumar, V., S. Green, A. Staub, and J. Chambon 1986. Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J. 5:2231–2236.
  • Kumar, V., S. Green, G. Stack, M. Berry, J. R. Jin, and J. Chambon 1987. Functional domains of the human estrogen receptor. Cell 51:941–951.
  • Lees, J. A., S. E. Fawell, and J. Parker 1989. Identification of two transactivation domains in the mouse oestrogen receptor. Nucleic Acids Res. 17:5477–5488.
  • Le Goff, P., M. M. Montano, D. J. Schodin, and J. Katzenellenbogen 1994. Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J. Biol. Chem. 269:4458–4466.
  • Ma, Z. Q., S. Santagati, C. Patrone, G. Pollio, E. Vegeto, and J. Maggi 1994. Insulin-like growth factors activate estrogen receptor to control the growth and differentiation of the human neuroblastorna cell line SK-ER3. Mol. Endocrinol. 8:910–918.
  • Mangelsdorf, D. J., and J. Evans 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850.
  • Mangelsdorf, D. J., C. Thummel, M. Beato, P. Hefflich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and J. Evans 1995. The nuclear receptor superfamily: the second decade. Cell 8:835–839.
  • McDonnell, D. P., D. L. Clemm, T. Hermann, M. E. Goldman, and J. Pike 1995. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol. Endocrinol. 9:659–669.
  • McInerney, E. M., and J. Katzenellenbogen 1996. Different regions in activation function-1 of the human estrogen receptor required for antiestrogen- and estradiol-dependent transcription activation. J. Biol. Chem. 271:24172–24178.
  • Metzger, D., S. Ali, J.-M. Bornert, and J. Chambon 1995. Characterization of the N-terminal transcriptional activation function (AF-1) of the human oestrogen receptor in animal and yeast cells. J. Biol. Chem. 270:9535–9542.
  • Metzger, D., M. Berry, S. Ali, and J. Chambon 1995. Effect of antagonists on DNA binding properties of the human oestrogen receptor in vitro and in vivo. Mol. Endocrinol. 9:579–591.
  • Newton, C. J., R. Buric, T. Trapp, S. Brockmeier, U. Pagotto, and J. Stalla 1994. The unliganded estrogen receptor (ER) transduces growth factor signals. J. Steroid Biochem. Mol. Biol. 48:481–486.
  • Ogawa, S., S. Inoue, T. Watanabe, H. Hiroi, A. Orimo, T. Hosoi, Y. Ouchi, and J. Muramatsu 1998. The complete primary structure of human estrogen receptor β (hERβ) and its heterodimerization with ERα in vivo and in vitro. Biochem. Biophys. Res. Commun. 243:122–126.
  • Pace, P. E., J. Taylor, S. Suntharalingam, R. C. Coombes, and J. Ali 1997. Human estrogen receptor beta binds DNA in a manner similar to and dimerises with estrogen receptor alpha. J. Biol. Chem. 272:25832–25838.
  • Patrone, C., Z. Q. Ma, G. Pollio, P. Agrati, M. G. Parker, and J. Maggi 1996. Cross-coupling between insulin and estrogen receptor in human neuroblastoma cells. Mol. Endocrinol. 10:499–507.
  • Pettersson, K., K. Grandien, G. G. Kuiper, and J. Gustafsson 1997. Mouse estrogen receptor β forms estrogen response element-binding heterodimers with estrogen receptor α. Mol. Endocrinol. 11:1486–1496.
  • Pham, T. A., J. F. Elliston, Z. Nawaz, D. P. McDonnell, M.-J. Tsai, and J. O’Malley 1991. Antiestrogens can establish nonproductive receptor complexes and alter chromatin structure at target enhancers. Proc. Natl. Acad. Sci. USA 88:3125–3129.
  • Philipsen, J. N. J., B. C. Hennis, and J. Ab 1988. In vivo footprinting of the estrogen-inducible vitellogenin II gene from chicken. Nucleic Acids Res. 16:9663–9676.
  • Pietras, R. J., J. Arboleda, D. M. Reese, N. Wongvipat, M. D. Pelgram, L. Ramos, C. M. Gorman, M. G. Parker, M. X. Sliwkowski, and J. Slamon 1995. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10:2435–2446.
  • Power, R. F., S. K. Mani, J. Codina, O. M. Conneely, and J. O’Malley 1991. Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254:1636–1639.
  • Ray, A., K. E. Prefontaine, and J. Ray 1994. Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J. Biol. Chem. 269:12940–12946.
  • Reese, J. C., and J. Katzenellenbogen 1992. Examination of the DNA-binding ability of estrogen receptor in whole cells: implications for hormone-independent transactivation and the actions of antiestrogens. Mol. Cell. Biol. 12:4531–4538.
  • Rochette-Egly, C., S. Adam, M. Rossignol, J.-M. Egly, and J. Chambon 1997. Stimulation of RARα activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90:97–107.
  • Rochette-Egly, C., M. Oulad-Abdelghani, A. Staub, V. Pfister, I. Scheuer, P. Chambon, and J. Gaub 1995. Phosphorylation of the retinoic acid receptor a by protein kinase A. Mol. Endocrinol. 9:860–871.
  • Saha, S., J. M. Brickman, N. Lehming, and J. Ptashne 1993. New eukaryotic transcriptional repressors. Nature 363:648–652.
  • Schwabe, J. W. R. Personal communication.
  • Schwabe, J. W. R., L. Chapman, J. T. Finch, and J. Rhodes 1993. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 70:567–578.
  • Stein, B., and J. Yang 1995. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C-EBP beta. Mol. Cell. Biol. 15:4971–4979.
  • Takimoto, G. S., A. R. Hovland, D. M. Tasset, M. Y. Melville, L. Tung, and J. Horwitz 1996. Role of phosphorylation on DNA binding and transcriptional functions of human progesterone receptors. J. Biol. Chem. 271:13308–13316.
  • Tora, L., A. Mullick, D. Metzger, M. Ponglikitmongkol, I. Park, and J. Chambon 1989. The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties. EMBO J. 8:1981–1986.
  • Tora, L., J. White, C. Brou, D. Tasset, N. Webster, E. Scheer, and J. Chambon 1989. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59:477–487.
  • Tremblay, G. B., A. Tremblay, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, F. Labrie, and J. Giguere 1997. Cloning, chromosomal localization and functional analysis of the murine estrogen receptor β. Mol. Endocrinol. 11:353–365.
  • Tremblay, A., G. B. Tremblay, C. Labrie, F. Labrie, and J. Giguere 1998. EM800, a novel antiestrogen, acts as a pure antagonist of the transcriptional functions of estrogen receptors α and β. Endocrinology 139:111–118.
  • Truss, M., and J. Beato 1993. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocrine Rev. 14:459–479.
  • Tsai, M. J., and J. O’Malley 1994. Molecular mechanisms of action of steroid/thyroid/receptor superfamily members. Annu. Rev. Biochem. 63:451–486.
  • Webster, N. J. G., S. Green, J. R. Jin, and J. Chambon 1988. The hormone-binding domains of the estrogen and glucocorticoid receptors contain an inducible transcription activation function. Cell 54:199–207.
  • Weis, K. E., K. Ekena, J. A. Thomas, G. Lazenneac, and J. Katzenellenbogen 1996. Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol. Endocrinol. 10:1388–1398.
  • White, R., M. Sjoberg, E. Kalkhoven, and J. Parker 1997. Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine. EMBO J. 16:1427–1435.
  • Wijnholds, J., J. N. J. Philipsen, and J. Ab 1988. Tissue-specific and steroid-dependent interaction of transcription factors with the oestrogen-inducible apoVLDL II promoter in vivo. EMBO J. 7:2757–2763.
  • Zhang, Y., C. A. Beck, A. Poletti, J. P. Clement IV, P. Prendergast, T.-Y. Yip, T. W. Hutchens, D. P. Edwards, and J. Weigel 1997. Phosphorylation of human progesterone receptor by cyclin-dependent kinase 2 on three sites that are authentic basal phosphorylation sites in vivo. Mol. Endocrinol. 11:823–832.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.