5
Views
115
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Cell-Free Degradation of p27kip1, a G1 Cyclin-Dependent Kinase Inhibitor, Is Dependent on CDK2 Activity and the Proteasome

, &
Pages 1190-1201 | Received 11 Aug 1998, Accepted 27 Oct 1998, Published online: 28 Mar 2023

REFERENCES

  • Amsterdam, A., F. Pitzer, and J. Baumeister 1993. Changes in intracellular localization of proteasomes in immortalized ovarian granulosa cells during mitosis associated with a role in cell cycle control. Proc. Natl. Acad. Sci. USA 90:99–103.
  • Baboshina, O. V., and J. Haas 1996. Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2 and RAD6 are recognized by 26 S proteasome subunit 5. J. Biol. Chem. 271:2823–2831.
  • Bai, C., P. Sen, K. Hofmann, L. Ma, M. Goebl, J. W. Harper, and J. Elledge 1996. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274.
  • Baumeister, W., J. Walz, F. Zühl, and J. Seemüller 1998. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380.
  • Blain, S. W., E. Montalvo, and J. Massagué 1997. Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J. Biol. Chem. 272:25863–25872.
  • Brandeis, M., and J. Hunt 1996. The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase. EMBO J. 15:5280–5289.
  • Casaccia-Bonnefil, P., R. Tikoo, H. Kiyokawa, V. Friedrich Jr., M. V. Chao, and J. Koff 1997. Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev. 11:2335–2346.
  • Chau, V., J. W. Tobias, A. Bachmair, D. Marriott, D. J. Ecker, D. K. Gonda, and J. Varshavshky 1989. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583.
  • Cheng, M., V. Sexl, C. J. Sherr, and J. Roussel 1998. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc. Natl. Acad. Sci. USA 95:1091–1096.
  • Ciechanover, A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21.
  • Clurman, B. E., R. J. Sheaff, K. Thress, M. Groudine, and J. Roberts 1996. Turnover of cyclin E by the ubiquitin-dependent proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev. 10:1979–1990.
  • Desai, D., Y. Gu, and J. Morgan 1992. Activation of human cyclin-dependent kinases in vitro. Mol. Biol. Cell 3:571–582.
  • Deshaies, R. J., V. Chau, and J. Kirschner 1995. Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J. 14:303–312.
  • Diehl, J. A., F. Zindy, and J. Sherr 1997. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 11:957–972.
  • el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and J. Vogelstein 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Elias, S., B. Bercovich, C. Kahana, P. Coffino, M. Fischer, W. Hilt, D. H. Wolf, and J. Ciechanover 1995. Degradation of ornithine decarboxylase by the mammalian and yeast 26S proteasome complexes requires all the components of the protease. Eur. J. Biochem. 229:276–283.
  • Feldman, R. M. R., C. C. Correll, K. B. Kaplan, and J. Deshaies 1997. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221–230.
  • Galan, J.-M., and J. Haguenauer-Tsapis 1997. Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J. 16:5847–5854.
  • Glotzer, M., A. W. Murray, and J. Kirschner 1991. Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138.
  • Goebl, M. G., J. Yochem, S. Jentsch, J. P. McGrath, A. Varshavsky, and J. Byers 1988. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 212:1331–1335.
  • Henchoz, S., Y. Chi, B. Catarin, I. Herskowitz, R. J. Deshaies, and J. Peter 1997. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev. 11:3046–3060.
  • Hengst, L., and J. Reed 1996. Translational control of p27Kip1 accumulation during the cell cycle. Science 271:1861–1864.
  • Hershko, A., D. Ganoth, J. Pehrson, R. E. Palazzo, and J. Cohen 1991. Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. J. Biol. Chem. 266:16376–16379.
  • Hilt, W., and J. Wolf 1996. Proteasomes: destruction as a programme. Trends Biochem. Sci. 21:96–102.
  • Hochstrasser, M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30:405–439.
  • Hoyt, M. A. 1997. Eliminating all obstacles: regulated proteolysis in the eukaryotic cell cycle. Cell 91:149–151.
  • Jariel-Encontre, I., M. Pariat, F. Martin, S. Carillo, C. Salvat, and J. Piechaczyk 1995. Ubiquitinylation is not an absolute requirement for degradation of c-Jun protein by the 26 S proteasome. J. Biol. Chem. 270:11623–11627.
  • Jentsch, S. 1992. The ubiquitin-conjugation system. Annu. Rev. Genet. 26:179–207.
  • King, R. W., J.-M. Peters, S. Tugendreich, M. Rolfe, P. Hieter, and J. Kirschner 1995. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81:279–288.
  • King, R. W., R. J. Deshaies, J.-M. Peters, and J. Kirschner 1996. How proteolysis drives the cell cycle. Science 274:1652–1659.
  • Kiyokawa, H., R. D. Kineman, K. O. Manova-Todorova, V. C. Soares, E. S. Hoffman, M. Ono, D. Khanam, A. C. Hayday, L. A. Frohman, and J. Koff 1996. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85:721–732.
  • Koff, A., F. Cross, A. Fisher, J. Schumacher, K. Leguellec, M. Philippe, and J. Roberts 1991. Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66:1217–1228.
  • Koff, A., A. Giordano, D. Desai, K. Yamashita, J. W. Harper, S. Elledge, T. Nishimoto, D. O. Morgan, B. R. Franza, and J. Roberts 1992. Formation and activation of a cyclin E-cdk2 complex during G1 phase of the human cell cycle. Science 257:1689–1694.
  • Krek, W. 1998. Proteolysis and the G1-S transition: the SCF connection. Curr. Opin. Genet. Dev. 8:36–42.
  • Lanker, S., M. H. Vladivieso, and J. Wittenberg 1996. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271:1597–1601.
  • Luo, Y., J. Hurwitz, and J. Massagué 1995. Cell-cycle inhibition by independent CDK and PCNA binding domains of p21Cip1. Nature 375:159–161.
  • Mathias, N., S. L. Johnson, M. Wilney, A. E. Adams, L. Goetsch, J. R. Pringle, B. Byers, and J. Goebl 1996. Cdc53 acts in concert with Cdc4 and Cdc34 to control the G1 to S phase transition and identifies a conserved family of proteins. Mol. Cell. Biol. 16:6634–6643.
  • Meijer, L. 1995. Chemical inhibitors of cyclin-dependent kinases Progress in cell cycle research In L. Meijer, S. Guidet, H. Y. L. Tung (ed.), 1:351–363 Plenum Press, New York, N.Y.
  • Millard, S. S., J. S. Yan, H. Nguyen, M. Pagano, H. Kiyokawa, and J. Koff 1997. Enhanced ribosomal association of p27Kip1 mRNA is a mechanism contributing to accumulation during growth arrest. J. Biol. Chem. 272:7093–7098.
  • Murakami, Y., S. Matsufuji, T. Kameji, S. Hayashi, K. Igarashi, T. Tamura, K. Tanaka, and J. Ichihara 1992. Ornithine decarboxylase is a degraded by the 26S proteasome without ubiquitination. Nature 360:597–599.
  • Nederlof, P. M., H.-R. Wang, and J. Baumeister 1995. Nuclear localization signals of human and Thermoplasma proteasomal subunits are functional in vitro. Proc. Natl. Acad. Sci. USA 92:12060–12064.
  • Pagano, M., S. W. Tam, A. M. Theodoras, P. Beer-Romero, G. Del Sal, V. Chau, P. R. Yew, G. F. Draetta, and J. Rolfe 1995. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685.
  • Patel, R., B. Bartosch, and J. Blank 1998. p21WAF1 is dynamically associated with JNK in human T-lymphocytes during cell cycle progression. J. Cell Sci. 111:2247–2255.
  • Patton, E. E., A. R. Willems, and J. Tyers 1998. Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet. 14:236–243.
  • Pickart, C. M. 1997. Targeting of substrates to the 26S proteasome. FASEB J. 11:1055–1066.
  • Pines, J., and J. Hunter 1989. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58:833–846.
  • Polyak, K., J.-Y. Kato, M. J. Solomon, C. J. Sherr, J. Massagué, J. M. Roberts, and J. Koff 1994. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 8:9–22.
  • Schneider, B. L., Q. H. Yang, and J. Futcher 1996. Linkage of replication to Start by the Cdk inhibitor Sic1. Science 272:560–562.
  • Schwob, E., T. Böhm, M. D. Mendenhall, and J. Nasmyth 1994. The B-type cyclin kinase inhibitor p40sic1 controls the G1 to S transition in S. cerevisiae. Cell 79:233–244.
  • Schwob, E., and J. Nasmyth 1993. CLB5 and CLB6, a new pair of B cyclins involved in S phase and mitotic spindle formation in S. cerevisiae. Genes Dev. 7:1160–1175.
  • Sheaff, R. J., M. Groudine, M. Gordon, J. M. Roberts, and J. Clurman 1997. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 11:1464–1478.
  • Sherr, C. J., and J. Roberts 1995. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9:1149–1163.
  • Shim, J., H. Lee, J. Park, H. Kim, and J. Choi 1996. A non-enzymatic p21 protein inhibitor of stress-activated protein kinases. Nature 381:804–806.
  • Shou, W., and J. Dunphy 1996. Cell cycle control by Xenopus p28Kix1, a developmentally regulated inhibitor of cyclin-dependent kinases. Mol. Biol. Cell 7:457–469.
  • Skowyra, D., K. L. Craig, M. Tyers, S. J. Elledge, and J. Harper 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219.
  • Soos, T. J., H. Kiyokawa, J. S. Yan, M. S. Rubin, A. Giordano, A. DeBlasio, S. Bottega, B. Wong, J. Mendelsohn, and J. Koff 1996. Formation of p27-CDK complexes during the human mitotic cell cycle. Cell Growth Differ. 7:135–146.
  • Su, Y., R. E. Rempel, E. Erikson, and J. Maller 1995. Cloning and characterization of the Xenopus cyclin-dependent kinase inhibitor p27xic1. Proc. Natl. Acad. Sci. USA 92:10187–10191.
  • Sudakin, V., D. Ganoth, A. Dahan, H. Heller, J. Hershko, F. C. Luca, J. V. Ruderman, and J. Hershko 1995. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6:185–198.
  • Tokumoto, T., M. Yamashita, M. Tokumoto, Y. Katsu, R. Horiguchi, H. Kajiura, and J. Nagahama 1997. Initiation of cyclin B degradation by the 26S proteasome upon egg activation. J. Cell Biol. 138:1313–1322.
  • Tong, W., H. Kiyokawa, T. J. Soos, M. S. Park, V. C. Soares, K. Manova, J. W. Pollard, and J. Koff 1998. The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulosa→luteal transition. Cell Growth Differ. 9:787–794.
  • Tyers, M. 1996. The cyclin-dependent kinase inhibitor p40sic1 imposes the requirement for Cln G1 cyclin function at Start. Proc. Natl. Acad. Sci. USA 93:7772–7776.
  • Varshavsky, A. 1997. The ubiquitin system. Trends Biochem. Sci. 22:383–387.
  • Verma, R., R. S. Annan, M. J. Huddleston, S. A. Carr, G. Reynard, and J. Deshaies 1997. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278:455–460.
  • Vlach, J., S. Hennecke, and J. Amati 1997. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. EMBO J. 16:5334–5344.
  • Wang, H.-R., M. Kania, W. Baumeister, and J. Nederlof 1997. Import of human and thermoplasma 20S proteasomes into nuclei of HeLa cells requires functional NLS sequences. Eur. J. Cell Biol. 73:105–113.
  • Won, K.-A., and J. Reed 1996. Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J. 15:4182–4193.
  • Yaglom, J., M. H. K. Linskens, S. Sadis, D. M. Rubin, B. Futcher, and J. Finley 1995. p34Cdc28-mediated control of Cln3 cyclin degradation. Mol. Cell. Biol. 15:731–741.
  • Yew, P. R., and J. Kirschner 1997. Proteolysis and DNA replication: the CDC34 requirement in the Xenopus egg cell cycle. Science 277:1672–1676.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.