36
Views
106
CrossRef citations to date
0
Altmetric
Minireview

AT-AC Pre-mRNA Splicing Mechanisms and Conservation of Minor Introns in Voltage-Gated Ion Channel Genes

&
Pages 3225-3236 | Published online: 28 Mar 2023

REFERENCES

  • Abovich, N., and J. Rosbash 1997. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89:403–412.
  • Adato, A., D. Weil, H. Kalinski, Y. Pel-Or, H. Ayadi, C. Petit, M. Korostishevsky, and J. Bonne-Tamir 1997. Mutation profile of all 49 exons of the human myosin VIIA gene, and haplotype analysis, in Usher 1B families from diverse origins. Am. J. Hum. Genet. 61:813–821.
  • Aebi, M., H. Hornig, and J. Weissmann 1987. 5′ cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5′ splice region, not by the conserved 5′ GU. Cell 50:237–246.
  • Aszodi, A., D. R. Beier, L. Hiripi, Z. Bosze, and J. Fassler 1998. Sequence, structure and chromosomal localization of Crtm gene encoding mouse cartilage matrix protein and its exclusion as a candidate for murine achondroplasia. Matrix Biol. 16:563–573.
  • Bao, Y., T. L. Dawson Jr., and J. Chen 1996. Human glycogen debranching enzyme gene (AGL): complete structural organization and characterization of the 5′ flanking region. Genomics 38:155–165.
  • Berget, S. M. 1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270:2411–2414.
  • Black, D. L. 1995. Finding splice sites within a wilderness of RNA. RNA 1:763–771.
  • Breathnach, R., C. Benoist, K. O’Hare, F. Gannon, and J. Chambon 1978. Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc. Natl. Acad. Sci. USA 75:4853–4857.
  • Burge, C. B., T. H. Tuschl, and P. A. Sharp. Splicing of precursors to messenger RNAs by the spliceosome, p. 561–584. In R. F. Gesteland, and J. F. Atkins (ed.), The RNA world II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Burge, C. B., R. A. Padgett, and J. Sharp 1998. Evolutionary fates and origins of U12-type introns. Mol. Cell 2:773–785.
  • Cáceres, J. F., A. R. Krainer 1997. Mammalian pre-mRNA splicing factors, p. 174–212. In A. R. Krainer (ed.), Eukaryotic mRNA processing. IRL Press, Oxford, United Kingdom.
  • Carothers, A. M., G. Urlaub, D. Grunberger, and J. Chasin 1993. Splicing mutants and their second-site suppressors at the dihydrofolate reductase locus in Chinese hamster ovary cells. Mol. Cell. Biol. 13:5085–5098.
  • Catterall, W. A. 1988. Structure and function of voltage-sensitive ion channels. Science 242:50–61.
  • Chanfreau, G., P. Legrain, B. Dujon, and J. Jacquier 1994. Interaction between the first and last nucleotides of pre-mRNA introns is a determinant of 3′ splice site selection in S. cerevisiae. Nucleic Acids Res. 22:1981–1987.
  • Chew, S., H.-X. Liu, A. Mayeda, and A. R. Krainer. An exonic splicing enhancer facilitates the second catalytic step of pre-mRNA splicing. Submitted for publication.
  • Cho, C., L. Turner, P. Primakoff, and J. Myles 1997. Genomic organization of the mouse fertilin beta gene that encodes an ADAM family protein active in sperm-egg fusion. Dev. Genet. 20:320–328.
  • Coulter, L. R., M. A. Landree, and J. Cooper 1997. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol. Cell. Biol. 17:2143–2150.
  • Dierick, H. A., L. Ambrosini, J. Spencer, T. W. Glover, and J. Mercer 1995. Molecular structure of the Menkes disease gene (ATP7A). Genomics 28:462–469.
  • Dietrich, R. C., R. Incorvaia, and J. Padgett 1997. Terminal intron dinucleotide sequences do not distinguish between U2- and U12-dependent introns. Mol. Cell 1:151–160.
  • Doyle, J. L., and J. Stubbs 1998. Ataxia, arrhythmia and ion-channel gene defects. Trends Genet. 14:92–98.
  • Durkin, M. E., M. Gautam, F. Loechel, J. R. Sanes, J. P. Merlie, R. Albrechtsen, and J. Wewer 1996. Structural organization of the human and mouse laminin beta2 chain genes, and alternative splicing at the 5′ end of the human transcript. J. Biol. Chem. 271:13407–13416.
  • Eperon, I. C., D. C. Ireland, R. A. Smith, A. Mayeda, and J. Krainer 1993. Pathways for selection of 5′ splice sites by U1 snRNPs and SF2/ASF. EMBO J. 12:3607–3617.
  • Fujimaki, K., T. Yamazaki, M. Taniwaki, and J. Ichinose 1998. The gene for human protein Z is localized to chromosome 13 at band q34 and is coded by eight regular exons and one alternative exon. Biochemistry 37:6838–6846.
  • Genetics Computer Group. 1994. Program manual for the Wisconsin Package, version 8. Genetics Computer Group, Madison, Wis.
  • George, A. L. Jr., G. S. Iyer, R. Kleinfield, R. G. Kallen, and J. Barchi 1993. Genomic organization of the human skeletal muscle sodium channel gene. Genomics 15:598–606.
  • Gilliam, A. C., and J. Steitz 1993. Rare scleroderma autoantibodies to the U11 small nuclear ribonucleoprotein and to the trimethylguanosine cap of U small nuclear RNAs. Proc. Natl. Acad. Sci. USA 90:6781–6785.
  • Gontarek, R. R., M. T. McNally, and J. Beemon 1993. Mutation of an RSV intronic element abolishes both U11/U12 snRNP binding and negative regulation of splicing. Genes Dev. 7:1926–1936.
  • Gupta, S., R. K. Busch, R. Singh, and J. Reddy 1990. Characterization of U6 small nuclear RNA cap-specific antibodies. Identification of gamma-monomethyl-GTP cap structure in 7SK and several other human small RNAs. J. Biol. Chem. 265:19137–19142.
  • Hall, S. L., and J. Padgett 1994. Conserved sequences in a class of rare eukaryotic nuclear introns with non-consensus splice sites. J. Mol. Biol. 239:357–365.
  • Hall, S. L., and J. Padgett 1996. Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. Science 271:1716–1718.
  • Hawkins, J. D. 1988. A survey on intron and exon lengths. Nucleic Acids Res. 16:9893–9908.
  • Hoffman, B. E., and J. Grabowski 1992. U1 snRNP targets an essential splicing factor, U2AF65, to the 3′ splice site by a network of interactions spanning the exon. Genes Dev. 6:2554–2568.
  • Hoffman, E. P. 1995. Voltage-gated ion channelopathies: inherited disorders caused by abnormal sodium, chloride, and calcium regulation in skeletal muscle. Annu. Rev. Med. 46:431–441.
  • Hogan, K., R. G. Gregg, and J. Powers 1996. The structure of the gene encoding the human skeletal muscle alpha 1 subunit of the dihydropyridine-sensitive L-type calcium channel (CACNL1A3). Genomics 31:392–394.
  • Hu, Q., W. A. Kukull, S. L. Bressler, M. D. Gray, J. A. Cam, E. B. Larson, G. M. Martin, and J. Deeb 1998. The human FE65 gene: genomic structure and an intronic biallelic polymorphism associated with sporadic dementia of the Alzheimer type. Hum. Genet. 103:295–303.
  • Humphrey, M. B., J. Bryan, T. A. Cooper, and J. Berget 1995. A 32-nucleotide exon-splicing enhancer regulates usage of competing 5′ splice sites in a differential internal exon. Mol. Cell. Biol. 15:3979–3988.
  • Ianzano, L., M. D’Apolito, M. Centra, M. Savino, O. Levran, A. D. Auerbach, A. M. Cleton-Jansen, N. A. Doggett, J. C. Pronk, A. J. Tipping, R. A. Gibson, C. G. Mathew, S. A. Whitmore, S. Apostolou, D. F. Callen, L. Zelante, and J. Savoia 1997. The genomic organization of the Fanconi anemia group A (FAA) gene. Genomics 41:309–314.
  • Incorvaia, R., and J. Padgett 1998. Base pairing with U6atac snRNA is required for 5′ splice site activation of U12-dependent introns in vivo. RNA 4:709–718.
  • Jackson, I. J. 1991. A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res. 19:3795–3798.
  • Katagiri, T., Y. Harada, M. Emi, and J. Nakamura 1995. Human metalloprotease/disintegrin-like (MDC) gene: exon-intron organization and alternative splicing. Cytogenet. Cell. Genet. 68:39–44.
  • Kelley, P. M., M. D. Weston, Z. Y. Chen, D. J. Orten, T. Hasson, L. D. Overbeck, J. Pinnt, C. B. Talmadge, P. Ing, M. S. Mooseker, D. Corey, J. Sumegi, and J. Kimberling 1997. The genomic structure of the gene defective in Usher syndrome type Ib (MYO7A). Genomics 40:73–79.
  • Knebelmann, B., L. Forestier, L. Drouot, S. Quinones, C. Chuet, F. Benessy, J. Saus, and J. Antignac 1995. Splice-mediated insertion of an Alu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum. Mol. Genet. 4:675–679.
  • Koester, J. 1991. Voltage-gated ion channels and generation of the action potential, p. 104–118. In E. Kandel, J. Schwartz, T. Jessell (ed.), Principles of neural science. Elsevier Science Publishing Co., New York, N.Y.
  • Kohrman, D. C., J. B. Harris, and J. Meisler 1996. Mutation detection in the med and medJ alleles of the sodium channel Scn8a. Unusual splicing due to a minor class AT-AC intron. J. Biol. Chem. 271:17576–17581.
  • Kohtz, J. D., S. F. Jamison, C. L. Will, P. Zuo, R. Lührmann, M. A. Garcia-Blanco, and J. Manley 1994. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368:119–124.
  • Kolossova, I., and J. Padgett 1997. U11 snRNA interacts in vivo with the 5′ splice site of U12-dependent (AU-AC) pre-mRNA introns. RNA 3:227–233.
  • Krawczak, M., J. Reiss, and J. Cooper 1992. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90:41–54.
  • Kreivi, J. P., and J. Lamond 1996. RNA splicing: unexpected spliceosome diversity. Curr. Biol. 6:802–805.
  • Kreivi, J. P., K. Zefrivitz, and J. Akusjärvi 1991. A U1 snRNA binding site improves the efficiency of in vitro pre-mRNA splicing. Nucleic Acids Res. 19:6956.
  • Kuo, H. C., F. H. Nasim, and J. Grabowski 1991. Control of alternative splicing by the differential binding of U1 small nuclear ribonucleoprotein particle. Science 251:1045–1050.
  • Lafrenière, R. G., D. L. Rochefort, Z. Kibar, E. A. Fon, F. Han, J. Cochius, X. Kang, S. Baird, R. G. Korneluk, E. Andermann, J. M. Rommens, and J. Rouleau 1996. Isolation and characterization of GT335, a novel human gene conserved in Escherichia coli and mapping to 21q22.3. Genomics 38:264–272.
  • Lévy, G., F. Levi-Acobas, S. Blanchard, S. Gerber, D. Larget-Piet, V. Chenal, X. Z. Liu, V. Newton, K. P. Steel, S. D. Brown, A. Munnich, J. Kaplan, C. Petit, and J. Weil 1997. Myosin VIIA gene: heterogeneity of the mutations responsible for Usher syndrome type IB. Hum. Mol. Genet. 6:111–116.
  • Lewis, J. D., E. Izaurralde, A. Jarmolowski, C. McGuigan, and J. Mattaj 1996. A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5′ splice site. Genes Dev. 10:1683–1698.
  • Liu, H. X., M. Zhang, and J. Krainer 1998. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 12:1998–2012.
  • Ludwig, D. L., J. S. Mudgett, M. S. Park, A. V. Perez-Castro, and J. MacInnes 1996. Molecular cloning and structural analysis of the functional mouse genomic XPG gene. Mamm. Genome 7:644–649.
  • Luukkonen, B. G., and J. Séraphin 1997. The role of branchpoint-3′ splice site spacing and interaction between intron terminal nucleotides in 3′ splice site selection in Saccharomyces cerevisiae. EMBO J. 16:779–792.
  • Makalowski, W., G. A. Mitchell, and J. Labuda 1994. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet. 10:188–193.
  • Manley, J. L., and J. Tacke 1996. SR proteins and splicing control. Genes Dev. 10:1569–1579.
  • Matera, A. G., and J. Ward 1993. Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells. J. Cell Biol. 121:715–727.
  • McClatchey, A. I., C. S. Lin, J. Wang, E. P. Hoffman, C. Rojas, and J. Gusella 1992. The genomic structure of the human skeletal muscle sodium channel gene. Hum. Mol. Genet. 1:521–527.
  • McCullough, A. J., and J. Berget 1997. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol. Cell. Biol. 17:4562–4571.
  • McCullough, A. J., and J. Schuler 1997. Intronic and exonic sequences modulate 5′ splice site selection in plant nuclei. Nucleic Acids Res. 25:1071–1077.
  • Mighell, A. J., A. F. Markham, and J. Robinson 1997. Alu sequences. FEBS Lett. 417:1–5.
  • Mitchell, G. A., D. Labuda, G. Fontaine, J. M. Saudubray, J. P. Bonnefont, S. Lyonnet, L. C. Brody, G. Steel, C. Obie, and J. Valle 1991. Splice-mediated insertion of an Alu sequence inactivates ornithine delta-aminotransferase: a role for Alu elements in human mutation. Proc. Natl. Acad. Sci. USA 88:815–819.
  • Montzka, K. A., and J. Steitz 1988. Additional low-abundance human small nuclear ribonucleoproteins: U11, U12, etc. Proc. Natl. Acad. Sci. USA 85:8885–8889.
  • Mori, Y., H. Shiwaku, S. Fukushige, S. Wakatsuki, M. Sato, T. Nukiwa, and J. Horii 1997. Alternative splicing of hMSH2 in normal human tissues. Hum. Genet. 99:590–595.
  • Mount, S. M. 1996. AT-AC introns: an ATtACk on dogma. Science 271:1690–1692.
  • Nakai, K., and J. Sakamoto 1994. Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene 141:171–177.
  • Newman, A. J. 1997. The role of U5 snRNP in pre-mRNA splicing. EMBO J. 16:5797–5800.
  • Nilsen, T. W. 1996. A parallel spliceosome. Science 273:1813.
  • Nilsen, T. W. 1998. RNA-RNA interactions in nuclear pre-mRNA splicing, p. 279–307. In R. W. Simons, M. Grunberg-Manago (ed.), RNA structure and function. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Niwa, M., and J. Berget 1991. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes Dev. 5:2086–2095.
  • Ohshima, T., J. W. Nagle, H. C. Pant, J. B. Joshi, C. A. Kozak, R. O. Brady, and J. Kulkarni 1995. Molecular cloning and chromosomal mapping of the mouse cyclin-dependent kinase 5 gene. Genomics 28:585–588.
  • Ophoff, R. A., G. M. Terwindt, M. N. Vergouwe, R. van Eijk, P. J. Oefner, S. M. Hoffman, J. E. Lamerdin, H. W. Mohrenweiser, D. E. Bulman, M. Ferrari, J. Haan, D. Lindhout, G. J. van Ommen, M. H. Hofker, M. D. Ferrari, and J. Frants 1996. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552.
  • Parker, R., and J. Siliciano 1993. Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron. Nature 361:660–662.
  • Phillips, M. S., J. Fujii, V. K. Khanna, S. DeLeon, K. Yokobata, P. J. de Jong, and J. MacLennan 1996. The structural organization of the human skeletal muscle ryanodine receptor (RYR1) gene. Genomics 34:24–41.
  • Plant, K. E., A. Hair, and J. Morgan 1996. Genes encoding isoforms of transcription elongation factor TFIIS in Xenopus and the use of multiple unusual RNA processing signals. Nucleic Acids Res. 24:3514–3521.
  • Plummer, N. W., J. Galt, J. M. Jones, D. L. Burgess, L. K. Sprunger, D. C. Kohrman, and J. Meisler 1998. Exon organization, coding sequence, physical mapping, and polymorphic intragenic markers for the human neuronal sodium channel gene SCN8A. Genomics 54:287–296.
  • Rain, J. C., Z. Rafi, Z. Rhani, P. Legrain, and J. Krämer 1998. Conservation of functional domains involved in RNA binding and protein-protein interactions in human and Saccharomyces cerevisiae pre-mRNA splicing factor SF1. RNA 4:551–565.
  • Richards, A., C. Luccarini, and J. Pope 1997. The structural organisation of LAMA4, the gene encoding laminin alpha4. Eur. J. Biochem. 248:15–23.
  • Robberson, B. L., G. J. Cote, and J. Berget 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94.
  • Royaux, I., C. Lambert de Rouvroit, G. D’Arcangelo, D. Demirov, and J. Goffinet 1997. Genomic organization of the mouse reelin gene. Genomics 46:240–250.
  • Ryan, D. G., T. Lin, E. Brownie, W. A. Bridger, and J. Wolodko 1997. Mutually exclusive splicing generates two distinct isoforms of pig heart succinyl-CoA synthetase. J. Biol. Chem. 272:21151–21159.
  • Sahba, S., A. Nechiporuk, K. P. Figueroa, T. Nechiporuk, and J. Pulst 1998. Genomic structure of the human gene for spinocerebellar ataxia type 2 (SCA2) on chromosome 12q24.1. Genomics 47:359–364.
  • Santisteban, I., F. X. Arredondo-Vega, S. Kelly, M. Debre, A. Fischer, J. L. Perignon, B. Hilman, J. elDahr, D. H. Dreyfus, E. W. Gelfand et al.. 1995. Four new adenosine deaminase mutations, altering a zinc-binding histidine, two conserved alanines, and a 5′ splice site. Hum. Mutat. 5:243–250.
  • Scadden, A. D. J., and J. Smith 1995. Interactions between the terminal bases of mammalian introns are retained in inosine-containing pre-mRNAs. EMBO J. 14:3236–3246.
  • Sharp, P. A., and J. Burge 1997. Classification of introns: U2-type or U12-type. Cell 91:875–879.
  • Soldatov, N. M. 1994. Genomic structure of human L-type Ca2+ channel. Genomics 22:77–87.
  • Souslova, V. A., M. Fox, J. N. Wood, and J. Akopian 1997. Cloning and characterization of a mouse sensory neuron tetrodotoxin-resistant voltage-gated sodium channel gene, Scn10a. Genomics 41:201–209.
  • Spector, D. L. 1993. Nuclear organization of pre-mRNA processing. Curr. Opin. Cell Biol. 5:442–447.
  • Staknis, D., and J. Reed 1994. SR proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14:7670–7682.
  • Stamm, S., M. Q. Zhang, T. G. Marr, and J. Helfman 1994. A sequence compilation and comparison of exons that are alternatively spliced in neurons. Nucleic Acids Res. 22:1515–1526.
  • Stark, J. M., D. P. Bazett-Jones, M. Herfort, and J. Roth 1998. SR proteins are sufficient for exon bridging across an intron. Proc. Natl. Acad. Sci. USA 95:2163–2168.
  • Stephens, R. M., and J. Schneider 1992. Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. J. Mol. Biol. 228:1124–1136.
  • Sterner, D. A., T. Carlo, and J. Berget 1996. Architectural limits on split genes. Proc. Natl. Acad. Sci. USA 93:15081–15085.
  • Suchi, M., H. Sano, H. Mizuno, and J. Wada 1995. Molecular cloning and structural characterization of the human histidase gene (HAL). Genomics 29:98–104.
  • Takahara, K., S. Lee, S. Wood, and J. Greenspan 1995. Structural organization and genetic localization of the human bone morphogenetic protein 1/mammalian tolloid gene. Genomics 29:9–15.
  • Talerico, M., and J. Berget 1994. Intron definition in splicing of small Drosophila introns. Mol. Cell. Biol. 14:3434–3445.
  • Tanaka, K., A. Watakabe, and J. Shimura 1994. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell. Biol. 14:1347–1354.
  • Tarn, W. Y. 1996. Site-specific substitution of inosine at the terminal positions of a pre-mRNA intron: implications for the configuration of the terminal base interaction. Biochimie 78:1057–1065.
  • Tarn, W. Y., and J. Steitz 1996. A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell 84:801–811.
  • Tarn, W. Y., and J. Steitz 1996. Highly diverged U4 and U6 small nuclear RNAs required for splicing rare AT-AC introns. Science 273:1824–1832.
  • Tarn, W. Y., and J. Steitz 1997. Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge. Trends Biochem. Sci. 22:132–137.
  • Tarn, W. Y., T. A. Yario, and J. Steitz 1995. U12 snRNA in vertebrates: evolutionary conservation of 5′ sequences implicated in splicing of pre-mRNAs containing a minor class of introns. RNA 1:644–656.
  • Tian, H., and J. Kole 1995. Selection of novel exon recognition elements from a pool of random sequences. Mol. Cell. Biol. 15:6291–6298.
  • Tian, M., and J. Maniatis 1994. A splicing enhancer exhibits both constitutive and regulated activities. Genes Dev. 8:1703–1712.
  • Treisman, R., S. H. Orkin, and J. Maniatis 1983. Specific transcription and RNA splicing defects in five cloned beta-thalassaemia genes. Nature 302:591–596.
  • Tumer, Z., B. Vural, T. Tonnesen, J. Chelly, A. P. Monaco, and J. Horn 1995. Characterization of the exon structure of the Menkes disease gene using vectorette PCR. Genomics 26:437–442.
  • Valcárcel, J., R. Singh, M. R. Green 1995. Mechanism of regulated pre-mRNA splicing, p. 97–112. In A. I. Lamond (ed.), Pre-mRNA processing. Springer-Verlag, Heidelberg, Germany.
  • Wagener, R., B. Kobbe, and J. Paulsson 1998. Genomic organisation, alternative splicing and primary structure of human matrilin-4. FEBS Lett. 438:165–170.
  • Wang, Q., Z. Li, J. Shen, and J. Keating 1996. Genomic organization of the human SCN5A gene encoding the cardiac sodium channel. Genomics 34:9–16.
  • Wassarman, K. M., and J. Steitz 1992. The low-abundance U11 and U12 small nuclear ribonucleoproteins (snRNPs) interact to form a two-snRNP complex. Mol. Cell. Biol. 12:1276–1285.
  • Watakabe, A., K. Tanaka, and J. Shimura 1993. The role of exon sequences in splice site selection. Genes Dev. 7:407–418.
  • Watanabe, A., M. Ikejima, N. Suzuki, and J. Shimada 1996. Genomic organization and expression of the human MSH3 gene. Genomics 31:311–318.
  • Winand, N. J., J. A. Panzer, and J. Kolodner 1998. Cloning and characterization of the human and Caenorhabditis elegans homologs of the Saccharomyces cerevisiae MSH5 gene. Genomics 53:69–80.
  • Wu, H. J., P. Gaubier-Comella, M. Delseny, F. Grellet, M. Van Montagu, and J. Rouzé 1996. Non-canonical introns are at least 10 (9) years old. Nat. Genet. 14:383–384.
  • Wu, J. Y., and J. Maniatis 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75:1061–1070.
  • Wu, Q. 1998. Mechanisms of AT-AC pre-mRNA splicing in vitro. Ph.D. thesis. State University of New York at Stony Brook, Stony Brook.
  • Wu, Q., and A. R. Krainer. Unpublished observations.
  • Wu, Q., and J. Krainer 1996. U1-mediated exon definition interactions between AT-AC and GT-AG introns. Science 274:1005–1008.
  • Wu, Q., and J. Krainer 1997. Splicing of a divergent subclass of AT-AC introns requires the major spliceosomal snRNAs. RNA 3:586–601.
  • Wu, Q., and J. Krainer 1998. Purine-rich enhancers function in the AT-AC pre-mRNA splicing pathway and do so independently of intact U1 snRNP. RNA 4:1664–1673.
  • Xue, J., M. Jorgensen, U. Pihlgren, and J. Rask 1995. The myrosinase gene family in Arabidopsis thaliana: gene organization, expression and evolution. Plant Mol. Biol. 27:911–922.
  • Xue, J., and J. Rask 1995. The unusual 5′ splicing border GC is used in myrosinase genes of the Brassicaceae. Plant Mol. Biol. 29:167–171.
  • Yamada, Y., K. Masuda, Q. Li, Y. Ihara, A. Kubota, T. Miura, K. Nakamura, Y. Fujii, S. Seino, and J. Seino 1995. The structures of the human calcium channel alpha 1 subunit (CACNL1A2) and beta subunit (CACNLB3) genes. Genomics 27:312–319.
  • Yu, Y. T., and J. Steitz 1997. Site-specific crosslinking of mammalian U11 and U6atac to the 5′ splice site of an AT-AC intron. Proc. Natl. Acad. Sci. USA 94:6030–6035.
  • Yu, Y. T., W. Y. Tarn, T. A. Yario, and J. Steitz 1996. More Sm snRNAs from vertebrate cells. Exp. Cell Res. 229:276–281.
  • Zahler, A. M., and J. Roth 1995. Distinct functions of SR proteins in recruitment of U1 small nuclear ribonucleoprotein to alternative 5′ splice sites. Proc. Natl. Acad. Sci. USA 92:2642–2646.
  • Zhang, M. Q. 1998. Statistical features of human exons and their flanking regions. Hum. Mol. Genet. 7:919–932.
  • Zhuang, Y., and J. Weiner 1986. A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell 46:827–835.
  • Zuo, P., and J. Maniatis 1996. The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev. 10:1356–1368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.