22
Views
22
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Glycogen Synthase Phosphatase Interacts with Heat Shock Factor To Activate CUP1 Gene Transcription in Saccharomyces cerevisiae

&
Pages 3237-3245 | Received 15 Jul 1998, Accepted 12 Jan 1999, Published online: 28 Mar 2023

REFERENCES

  • Abravaya, K., M. P. Myers, S. P. Murphy, and J. Morimoto 1992. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 6:1153–1164.
  • Adams, A., D. E. Gottschling, C. Kaiser, T. Stearns 1998. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Buchman, C., P. Skroch, J. Welch, S. Fogel, and J. Karin 1989. The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol. Cell. Biol. 9:4091–4095.
  • Burton, D. R. 1995. Phage display. Immunotechnology 1:87–94.
  • Butler, G., and J. Thiele 1991. ACE2, an activator of yeast metallothionein expression which is homologous to SWI5. Mol. Cell. Biol. 11:476–485.
  • Cannon, J. F., J. R. Pringle, A. Fiechter, and J. Khalil 1994. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 136:485–503.
  • Chen, Y., N. A. Barlev, O. Westergaard, and J. Jakobsen 1993. Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity. EMBO J. 12:5007–5018.
  • Cheng, C., D. Huang, and J. Roach 1997. Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p. Yeast 13:1–8.
  • Chu, B., F. Soncin, B. D. Price, M. A. Stevenson, and J. Calderwood 1996. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J. Biol. Chem. 271:30847–30857.
  • Coen, D. M. 1994. Enzymatic amplification of DNA by PCR: standard procedures and optimization Current protocols in molecular biology In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl (ed.), 2:15.0.1–15.7.5 Wiley Interscience, Boston, Mass.
  • Collart, M. A., and J. Oliviero 1993. Preparation of yeast RNA Current protocols in molecular biology In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl (ed.), 2:13.12.1–13.12.2 Wiley Interscience, Boston, Mass.
  • Cotto, J. J., M. Kline, and J. Morimoto 1996. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J. Biol. Chem. 271:3355–3358.
  • Davis, R. W., D. Botstein, J. R. Roth 1980. Advanced bacterial genetics: a manual for genetic engineering. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Feng, Z. H., S. E. Wilson, Z. Y. Peng, K. K. Schlender, E. M. Reimann, and J. Trumbly 1991. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J. Biol. Chem. 266:23796–23801.
  • Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick et al.. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512.
  • Francois, J. M., S. Thompson-Jaeger, J. Skroch, U. Zellenka, W. Spevak, and J. Tatchell 1992. GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J. 11:87–96.
  • Giardina, C., and J. Lis 1995. Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol. Cell. Biol. 15:2737–2744.
  • Giardina, C., and J. Lis 1995. Sodium salicylate and yeast heat shock gene transcription. J. Biol. Chem. 270:10369–10372.
  • Greene, J. M., and J. Struhl 1988. S1 analysis of messenger RNA using single-stranded DNA probes Current protocols in molecular biology In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl (ed.), 1:4.6.7–4.6.9 Wiley Interscience, Boston, Mass.
  • Gross, D. S., K. E. English, K. W. Collins, and J. Lee 1990. Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements. J. Mol. Biol. 216:611–632.
  • Hardy, T. A., and J. Roach 1993. Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation. J. Biol. Chem. 268:23799–23805.
  • Harrison, J. L., S. C. Williams, G. Winter, and J. Nissim 1996. Screening of phage antibody libraries. Methods Enzymol. 267:83–108.
  • Hoess, R. H. Personal communication.
  • Hoess, R. H., M. Ziese, and J. Sternberg 1982. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc. Natl. Acad. Sci. USA 79:3398–3402.
  • Hoj, A., and J. Jakobsen 1994. A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J. 13:2617–2624.
  • Huibregtse, J. M., D. R. Engelke, and J. Thiele 1989. Copper-induced binding of cellular factors to yeast metallothionein upstream activation sequences. Proc. Natl. Acad. Sci. USA 86:65–69.
  • Jakobsen, B. K., and J. Pelham 1991. A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J. 10:369–376.
  • James, P., J. Halladay, and J. Craig 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436.
  • Jurivich, D. A., L. Sistonen, R. A. Kroes, and J. Morimoto 1992. Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245.
  • Kline, M. P., and J. Morimoto 1997. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell. Biol. 17:2107–2115.
  • Knauf, U., E. M. Newton, J. Kyriakis, and J. Kingston 1996. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev. 10:2782–2793.
  • Kretzschmar, T., C. Zimmermann, and J. Geiser 1995. Selection procedures for nonmatured phage antibodies: a quantitative comparison and optimization strategies. Anal. Biochem. 224:413–419.
  • Lin, J. T., and J. T. Lis. March 1999, posting date. Phage display library. [On-line.] http://www.bio.cornell.edu/biochem/lis/lis.html
  • Lis, J. T., H. Xiao, O. Perisic 1990. Modular units of heat shock regulatory regions: structure and function, p. 411–428. In R. Morimoto, A. Tissieres, C. Georgopoulos (ed.), Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Liu, X. D., and J. Thiele 1996. Oxidative stress induces heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription. Genes Dev. 10:592–603.
  • Mason, P. B. J., and J. Lis 1997. Cooperative and competitive protein interactions at the hsp70 promoter. J Biol. Chem. 272:33227–33233.
  • McCafferty, J., R. H. Johnson, and J. Chiswell 1991. Phage-enzymes: expression and affinity chromatography of functional alkaline phosphatase on the surface of bacteriophage. Protein Eng. 4:955–961.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Mosser, D. D., J. Duchaine, and J. Massie 1993. The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol. Cell. Biol. 13:5427–5438.
  • Nieto-Sotelo, J., G. Wiederrecht, A. Okuda, and J. Parker 1990. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62:807–818.
  • Parmley, S. F., and J. Smith 1988. Antibody-selectable filamentous Fd phage vectors affinity purification of target genes. Gene 73:305–318.
  • Peng, Z. Y., R. J. Trumbly, and J. Reimann 1990. Purification and characterization of glycogen synthase from a glycogen-deficient strain of Saccharomyces cerevisiae. J. Biol. Chem. 265:13871–13877.
  • Perisic, O., H. Xiao, and J. Lis 1989. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 base pair recognition unit. Cell 59:797–806.
  • Rabindran, S. K., R. I. Haroun, J. Clos, J. Wisniewski, and J. Wu 1993. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234.
  • Rabindran, S. K., J. Wisniewski, L. Li, G. C. Li, and J. Wu 1994. Interaction between heat shock factor and hsp70 is insufficient to suppress induction of DNA-binding activity in vivo. Mol. Cell. Biol. 14:6552–6560.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and J. Fink 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and J. Coulson 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Santoro, N., N. Johansson, and J. Thiele 1998. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor. Mol. Cell. Biol. 18:6340–6352.
  • Shi, Y., D. D. Mosser, and J. Morimoto 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12:654–666.
  • Silar, P., G. Butler, and J. Thiele 1991. Heat shock transcription factor activates transcription of the yeast metallothionein gene. Mol. Cell. Biol. 11:1232–1238.
  • Sorger, P. K., M. J. Lewis, and J. Pelham 1987. Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329:81–84.
  • Sorger, P. K., and J. Nelson 1989. Trimerization of a yeast transcriptional activator via coiled-coil motif. Cell 59:807–814.
  • Sorger, P. K., and J. Pelham 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864.
  • Sternberg, N., and J. Hoess 1995. Display of peptides and proteins on the surface of bacteriophage λ. Proc. Natl. Acad. Sci. USA 92:1609–1613.
  • Stuart, J. S., D. L. Frederick, C. M. Varner, and J. Tatchell 1994. The mutant type 1 protein phosphatase encoded by glc7-1 from Saccharomyces cerevisiae fails to interact productively with the GAC1-encoded regulatory subunit. Mol. Cell. Biol. 14:896–905.
  • Studier, F. W., and J. Moffatt 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189:113–130.
  • Tamai, K. T., X. Liu, P. Silar, T. Sosinowski, and J. Thiele 1994. Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol. Cell. Biol. 14:8155–8165.
  • Tatchell, K. Personal communication.
  • Thiele, D. J. 1988. ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol. Cell. Biol. 8:2745–2752.
  • Tu, J., and J. Carlson 1994. The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6789–6796.
  • Tu, J., W. Song, and J. Carlson 1996. Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4199–4206.
  • Westwood, J. T., and J. Wu 1993. Activation of Drosophila heat shock factor: conformational change associated with monomer to trimer transition. Mol. Cell. Biol. 13:3481–3486.
  • Wu, X., H. Hart, P. Roach, and K. Tatchell. Unpublished data.
  • Xia, W., and J. Voellmy 1997. Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J. Biol. Chem. 272:4094–4102.
  • Zuo, J., R. Baler, G. Dahl, and J. Voellmy 1994. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. Cell. Biol. 14:7557–7568.
  • Zou, J., Y. Guo, T. Guettouche, D. F. Smith, and J. Voellmy 1998. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.