20
Views
55
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Oxidative Stress-Induced Destruction of the Yeast C-Type Cyclin Ume3p Requires Phosphatidylinositol-Specific Phospholipase C and the 26S Proteasome

, &
Pages 3338-3348 | Received 30 Oct 1998, Accepted 26 Jan 1999, Published online: 28 Mar 2023

REFERENCES

  • Berridge, M. J. 1993. Inositol triphosphate and calcium signaling. Nature 361:315–325.
  • Brewster, J. L., T. de Valoir, N. D. Dwyer, E. Winter, and J. Gustin 1993. An osmosensing signal transduction pathway in yeast. Science 259:1760–1763.
  • Broach, J. R. 1991. RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet. 7:28–33.
  • Buckingham, L. E., H.-T. Wang, R. T. Elder, R. M. McCarroll, M. R. Slater, and J. Esposito 1990. Nucleotide sequence and promoter analysis of SPO13, a meiosis-specific gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87:9406–9410.
  • Chen, P., and J. Hochstrasser 1995. Biogenesis, structure and function of the yeast 20S proteasome. EMBO J. 14:2620–2630.
  • Chen, P., P. Johnson, T. Sommer, S. Jentsch, and J. Hochstrasser 1993. Multiple ubiquitin-conjugated enzymes participate in the in vivo degradation of the yeast MATα2 repressor. Cell 74:357–369.
  • Collinson, L. P., and J. Dawes 1992. Inducibility of the response of yeast cells to peroxide stress. J. Gen. Microbiol. 138:329–335.
  • Cooper, K. F., M. J. Mallory, J. S. Smith, and J. Strich 1997. Stress and developmental regulation of the yeast C-type cyclin UME3 (SRB11/SSN8). EMBO J. 16:4665–4675.
  • Cooper, K. F., and R. Strich. Functional analysis of the yeast C-type cyclin Ume3p and the RNA polymerase II holoenzyme interaction. Gene Expr., in press.
  • Craig, E. A. 1993. The heat-shock response of Saccharomyces cerevisiae, p. 501–538. In E. W. Jones, J. R. Pringle, J. R. Broach (ed.), The molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Davenport, K. R., M. Sohaskey, Y. Kamada, D. E. Levin, and J. Gustin 1995. A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J. Biol. Chem. 270:30157–30161.
  • Deshaies, R. J., V. Chau, Kirschner. 1995. Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J. 14:303–312.
  • Destruelle, M., H. Holzer, and J. Klionsky 1994. Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol. Cell. Biol. 14:2740–2754.
  • Evan, G. I., G. K. Lewis, G. Ramsay, and J. Bishop 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5:3610–3616.
  • Flick, J. S., and J. Thorner 1993. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:5861–5876.
  • Galaktionov, K., and J. Beach 1991. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclin. Cell 67:1181–1194.
  • Galan, J., and J. Haguenauer-Tsapis 1997. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J. 16:5847–5854.
  • Glotzer, M., A. W. Murray, and J. Kirschner 1991. Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138.
  • Gustin, M. C., X.-L. Zhou, B. Martinac, and J. Kung 1988. A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765.
  • Herskowitz, I. 1995. MAP kinase pathways in yeast: for mating and more. Cell 80:187–197.
  • Hokin, L. E. 1985. Receptors and phosphoinsitol-generated second messengers. Annu. Rev. Biochem. 54:205–235.
  • Jamieson, D. J. 1992. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J. Bacteriol. 174:6678–6681.
  • Jamieson, D. J., S. L. Rivers, and J. Stephen 1994. Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology 140:3277–3283.
  • Kamada, Y., U. S. Jung, J. Piotrowski, and J. Levin 1995. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 9:1559–1571.
  • Kornitzer, D., B. Raboy, R. G. Kulka, and J. Fink 1994. Regulated degradation of the transcription factor Gcn4. EMBO J. 13:6021–6030.
  • Krems, B., C. Charizanis, and J. Entian 1996. The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance. Curr. Genet. 29:327–334.
  • Lanker, S., M. H. Valdivieso, and J. Wittenberg 1996. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271:1597–1600.
  • Lee, K. S., K. Irie, Y. Gotoh, Y. Watanabe, H. Araki, E. Nishida, K. Matsumoto, and J. Levin 1993. A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol. Cell. Biol. 13:3067–3075.
  • Levin, D. E., F. O. Fields, R. Kunisawa, J. M. Bishop, and J. Thorner 1990. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 62:213–224.
  • Longtine, M. S., A. R. McKenzie, D. J. Demarini, N. G. Shah, A. Wach, A. Brachat, P. Philippsen, and J. Pringle 1998. Additional modules of versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • Mager, W. H., and J. De Kruijff 1995. Stress-induced transcriptional activation. Microbiol. Rev. 59:506–531.
  • Maniatis, T., E. F. Fritsch, J. Sambrook 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Moradas-Ferreira, P., V. Costa, P. Piper, and J. Mager 1996. The molecular defences against reactive oxygen species in yeast. Mol. Microbiol. 19:651–658.
  • Morimoto, R. I., K. D. Sarge, and J. Abravaya 1992. Transcriptional regulation of heat shock genes. J. Biol. Chem. 267:21987–21990.
  • Papa, F., and J. Hochstrasser 1993. The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature 25:313–319.
  • Paulovich, A. G., and J. Hartwell 1995. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82:841–847.
  • Payne, W. E., and J. Fitzgerald-Hayes 1993. A mutation in PLC1, a candidate phosphoinositide-specific phospholipase C gene from Saccharomyces cerevisiae, causes aberrant mitotic chromosome segregation. Mol. Cell. Biol. 13:4351–4364.
  • Pines, J. 1993. Cyclins and cyclin-dependent kinases: take your partners. Trends Biochem. Sci. 18:195–197.
  • Piper, P. W., K. Talreja, B. Panaretou, P. Moradas-Ferreira, K. Byrne, U. M. Praekelt, P. Meacock, M. Recnacq, and J. Boucerie 1994. Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140:3031–3038.
  • Ramos, P. C., J. Hockendorff, E. S. Johnson, A. Varshavsky, and J. Dohmen 1998. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92:489–499.
  • Salama, S. R., K. B. Hendricks, and J. Thorner 1994. G1 cyclin degradation: the PEST motif of yeast Cln2 is necessary, but not sufficient, for rapid protein turnover. Mol. Cell. Biol. 14:7953–7966.
  • Sanchez, Y., J. Taulien, K. A. Borkovich, and J. Lindquist 1992. Hsp104 is required for tolerance to many forms of stress. EMBO J. 11:2357–2364.
  • Santoro, N., D. J. Thiele 1997. Yeast stress responses, p. 171–203. In S. Hohmann, W. H. Mager (ed.), Molecular biology intelligence unit. R. G. Landes Co., Austin, Tex.
  • Schauber, C., L. Chen, P. Tongaonkar, I. Vega, D. Lambertson, W. Potts, and J. Madura 1998. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391:715–718.
  • Slater, M. R., and J. Craig 1987. Transcriptional regulation of an hsp70 heat shock gene in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1906–1916.
  • Stephen, D., S. Rivers, and J. Jamieson 1995. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol. Microbiol. 16:415–423.
  • Strich, R., M. R. Slater, and J. Esposito 1989. Identification of negative regulatory genes that govern the expression of early meiotic genes in yeast. Proc. Natl. Acad. Sci. USA 86:10018–10022.
  • Strich, R., M. Woontner, and J. Scott 1986. Mutations in ARS1 increase the rate of simple loss of plasmids in Saccharomyces cerevisiae. Yeast 2:169–178.
  • Surosky, R. T., and J. Esposito 1992. Early meiotic transcripts are highly unstable in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:3948–3958.
  • Tatchell, K., L. C. Robinson, and J. Breitenbach 1985. RAS2 of Saccharomyces cerevisiae is required for glyconeogenic growth and proper response to nutrient limitation. Proc. Natl. Acad. Sci. USA 82:3785–3789.
  • Tyers, M., G. Tokiwa, R. Nash, and J. Futcher 1992. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11:1773–1784.
  • Varela, J. C. S., U. M. Praekelt, P. A. Meacock, R. J. Planta, and J. Mager 1995. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol. 15:6232–6245.
  • Wilson, B. A., M. Khalil, R. Tamonoi, and J. Cannon 1993. New activated RAS2 mutations identified in Saccharomyces cerevisiae. Oncogene 8:3441–3445.
  • Woodford, D. V., H. H. Parish, and J. Moradas-Ferreira 1995. Hydrogen peroxide induces DNA damage in Saccharomyces cerevisiae. Yeast 11:149.
  • Yaglom, J., M. H. K. Linskens, S. Sadis, D. M. Rubin, B. Futcher, and J. Finley 1995. p34Cdc28-mediated control of Cln3 cyclin degradation. Mol. Cell. Biol. 15:731–741.
  • Yang, J.-M., K.-V. Chin, and J. Hait 1995. Involvement of phospholipase c in heat-shock-induced phosphorylation of P-glycoprotein in multidrug resistant human breast cancer cells. Biochem. Biophys. Res. Commun. 210:21–30.
  • Zheng, X. F., and J. Ruderman 1993. Functional analysis of the P box, a domain in cyclin B required for the activation of Cdc25. cell 75:155–164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.