48
Views
29
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Retinoid X Receptor (RXR) Agonist-Induced Activation of Dominant-Negative RXR-Retinoic Acid Receptor α403 Heterodimers Is Developmentally Regulated during Myeloid Differentiation

, , , , &
Pages 3372-3382 | Received 31 Aug 1998, Accepted 25 Jan 1999, Published online: 28 Mar 2023

REFERENCES

  • Agura, E., M. Howard, and J. Collins 1992. Identification and sequence analysis of the promoter for the leukocyte integrin beta subunit (CD18): a retinoic acid-inducible gene. Blood 79:602–609.
  • Alcalay, M., D. Zangrilli, P. Pandolfi, L. Longo, A. Mencarelli, A. Giacomucci, M. Rocchi, A. Biondi, A. Rambaldi, F. LoCoco, D. Diverioi, E. Donti, F. Grignani, and J. Pelicci 1991. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor α locus. Proc. Natl. Acad. Sci. USA 88:1977–1981.
  • Allegretto, E., M. R. McClurg, S. B. Lazarchik, D. L. Clemm, S. A. Kerner, M. G. Elgort, M. F. Boehm, S. K. White, J. W. Pike, and J. Heyman 1993. Transactivation properties of retinoic acid and retinoid X receptors in mammalian cells and yeast: correlation with hormone binding and effects of metabolism. J. Biol. Chem. 268:26625–26633.
  • Breitman, T., S. J. Collins, and J. Keene 1981. Terminal differentiation of human promyelocytic leukemia cells in primary culture in response to retinoic acid. Blood 57:1000–1004.
  • Castaigne, S., C. Chomienne, M. Daniel, N. Berger, P. Fenaux, and J. Degos 1990. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 76:1704–1712.
  • Cavailles, V., S. Dauvois, F. L’Horset, G. Lopez, S. Hoare, P. Kushner, and J. Parker 1995. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14:3741–3751.
  • Chen, H., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and J. Evans 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580.
  • Chen, J. D., and J. Evans 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457.
  • Collins, S. J., K. A. Robertson, and J. Mueller 1990. Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-α). Mol. Cell. Biol. 10:2154–2163.
  • Costa, S. L., and J. McBurney 1996. Dominant negative mutant of retinoic acid receptor-α inhibits retinoic acid-induced P19 cell differentiation by binding to DNA. Exp. Cell Res. 225:35–43.
  • Damm, K., R. A. Heyman, K. Umesono, and J. Evans 1993. Functional inhibition of retinoic acid response by dominant negative retinoic acid receptor mutants. Proc. Natl. Acad. Sci. USA 90:2989–2993.
  • de The, H., A. Marchio, P. Tiollais, and J. Dejean 1989. Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes. EMBO J. 8:429–439.
  • de The, H., C. Lavfau, A. Marchio, C. Chomienne, L. Degos, and J. Dejean 1991. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66:675–684.
  • DiRenzo, J., M. Soderstrom, R. Kurokawa, M.-H. Ogliastro, M. Ricote, S. Ingrey, A. Horlein, M. Rosenfeld, and J. Glass 1997. Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors. Mol. Cell. Biol. 17:2166–2176.
  • Durand, B., M. Saunders, C. Gaudon, B. Roy, R. Losson, and J. Chambon 1994. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13:5370–5382.
  • Forman, B., K. Umesono, J. Chen, and J. Evans 1995. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 81:541–550.
  • Giguere, V., E. Ong, P. Segui, and J. Evans 1987. Identification of a receptor for the morphogen retinoic acid. Nature 330:624–629.
  • Grignani, F., S. De Matteis, C. Nervi, L. Tomassoni, V. Gelmetti, M. Cioce, M. Fanelli, M. Ruthardt, F. Ferrara, I. Zamir, C. Seiser, F. Grignani, M. Lazar, S. Minucci, and J. Pelicci 1998. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukemia. Nature 319:815–818.
  • Halachmi, S., E. Marden, G. Martin, H. MacKay, C. Abbondanza, and J. Brown 1994. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 264:1455–1458.
  • He, L.-Z., F. Guidez, C. Tribioli, D. Peruzzi, M. Ruthardt, A. Zelent, and J. Pandolfi 1998. Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nat. Genet. 18:126–135.
  • Heinzel, T., R. Lavinsky, T. M. Mullen, M. Soderstrom, C. Laherty, J. Torchia, W.-M. Yang, G. Brard, S. Ngo, J. Davie, E. Seto, R. Eisenman, D. Rose, C. Glass, and J. Rosenfeld 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48.
  • Heyman, R. A., D. J. Mangelsdorf, J. A. Dyck, R. B. Stein, G. Eichele, R. M. Evans, and J. Thaller 1992. 9-Cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68:397–406.
  • Hollenberg, S., and J. Evans 1988. Multiple and cooperative transactivation domains of the human glucocorticoid receptor. Cell 55:899–906.
  • Hong, H., K. Kohli, M. Garabedian, and J. Stallcup 1997. Grip1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol. 17:2735–2744.
  • Horlein, A., A. Naar, T. Heinzel, J. Torchia, B. Gloss, R. Kurokawa, A. Ryan, Y. Kamei, M. Soderstrom, C. Glass, and J. Rosenfeld 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404.
  • Huang, M., Y. C. Ye, S. R. Chen, J. R. Chai, J. X. Lu, L. Zhoa, L. J. Gu, and J. Wang 1988. Use of all trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–574.
  • Imakado, S., J. Bickenbach, D. Bundman, J. Rothnagel, P. Attar, X.-J. Wang, V. Walczak, S. Wisniewski, J. Pote, J. Gordon, R. Heyman, R. Evans, and J. Roop 1995. Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function. Genes Dev. 9:317–329.
  • Johnson, A. T., E. S. Klein, S. J. Gillet, L. Wang, T. K. Song, M. E. Pino, and J. Chandraratna 1995. Synthesis and characterization of a highly potent and effective antagonist of retinoic acid receptors. J. Med. Chem. 38:4764–4767.
  • Kakizuka, A., W. Miller, K. Umesono, R. Warrell, S. Frankel, V. Murty, E. Dmitrovsky, and J. Evans 1991. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 66:663–674.
  • Kastner, P., M. Mark, and J. Chambon 1995. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83:859–869.
  • Kawasaki, H., R. Eckner, T.-P. Yao, K. Taira, R. Chiu, D. Livingston, and J. Yokoyama 1998. Distinct roles of the co-activators p300 and CBP in retinoic acid-induced F9 cell differentiation. Nature 393:284–288.
  • Kurokawa, R., J. DiRenzo, M. Boehm, J. Sugarman, B. Gloss, M. Rosenfeld, R. Heyman, and J. Glass 1994. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371:528–531.
  • Kurokawa, R., M. Soderstrom, A. Horlein, S. Halachmi, M. Brown, M. Rosenfeld, and J. Glass 1995. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377:451–454.
  • Laherty, C., A. Billin, R. Lavinsky, G. Yochum, A. Bush, J.-M. Sun, T.-M. Mullen, J. Davie, D. Rose, C. Glass, M. Rosenfeld, D. Ayer, and J. Eisenman 1998. SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. Mol. Cell 2:33–42.
  • Lala, D., R. Mukherjee, I. Schulman, S. Canan Koch, L. Dardashti, A. Nadzan, G. Croston, R. Evans, and J. Heyman 1996. Activation of specific RXR heterodimers by an antagonist of RXR homodimers. Nature 383:450–453.
  • Largman, C., K. Detmer, J. Corral, F. Hack, and J. Lawrence 1989. Expression of retinoic acid receptor alpha in mRNA in human leukemia cells. Blood 74:99–102.
  • Leblanc, B., and J. Stunnenberg 1995. 9-Cis retinoic acid signaling: changing partners causes some excitement. Genes Dev. 9:1811–1816.
  • Li, H., C. Leo, D. Schroen, and J. Chen 1997. Characterization of receptor interaction and transcriptional repression by the corepressor SMRT. Mol. Endocrinol. 11:2025–2037.
  • Lin, R., L. Nagy, S. Inoue, W. Shao, W. Miller, and J. Evans 1998. Role of the histone deacetylase complex in acute promyelocytic leukemia. Nature 391:811–814.
  • Mangelsdorf, D., K. Umesono, S. Kliewer, U. Borgmeyer, E. Ong, and J. Evans 1991. A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 66:555–561.
  • Mangelsdorf, D., and J. Evans 1995. The RXR and orphan receptors. Cell 83:841–850.
  • Morosetti, R., F. Grignani, C. Liberatore, P. Pelicci, G. Schiller, M. Kizaki, C. Bartram, C. Miller, and J. Koeffler 1996. Infrequent alterations of the RAR alpha gene in acute myelogenous leukemias, retinoic acid-resistant acute promyelocytic leukemias, myelodysplastic syndromes and cell lines. Blood 87:4399–4403.
  • Nagy, L., H.-Y. Kao, D. Chakravarti, R. Lin, C. Hassig, D. Ayer, S. Schreiber, and J. Evans 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380.
  • Onate, S., S. Tsai, M.-J. Tsai, and J. O’Malley 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357.
  • Robertson, K., B. Emami, and J. Collins 1992. Retinoic acid-resistant HL-60R cells harbor a point mutation in the RA receptor ligand binding domain that confers dominant negative activity. Blood 80:1885–1889.
  • Sadowski, I., and J. Ptashne 1989. A vector for expressing GAL4 (1-147) fusions in mammalian cells. Nucleic Acids Res. 17:753.
  • Saitou, M., S. Narumiya, and J. Kakizuka 1994. Alteration of a single amino acid residue in retinoic acid receptor causes dominant-negative phenotype. J. Biol. Chem. 269:19101–19107.
  • Saitou, M., S. Sugai, T. Tanaka, K. Shimouchi, E. Fuchs, S. Narumiya, and J. Kakizuka 1995. Inhibition of skin development by targeted expression of a dominant-negative retinoic acid receptor. Nature 374:159–162.
  • Schulman, I., C. Li, J. W. R. Schwabe, and J. Evans 1997. The phantom ligand effect: allosteric control of transcription by the retinoid X receptor. Genes Dev. 11:299–308.
  • Seewaldt, V. L., L. E. Caldwell, B. S. Johnson, K. Swisshelm, S. J. Collins, and J. Tsai 1997. Inhibition of retinoic acid receptor function in normal human mammary epithelial cells results in increased cellular proliferation and inhibits the formation of a polarized epithelium in vitro. Exp. Cell Res. 236:16–28.
  • Solomin, L., C. Johansson, R. Zetterstrom, R. Bissonnette, R. Heyman, L. Olson, U. Lendahl, J. Frisen, and J. Perlmann 1998. Retinoid-X receptor signalling in the developing spinal cord. Nature 395:398–401.
  • Tate, B., G. Allenby, R. Janocha, S. Kazmer, J. Speck, L. Sturzenbecker, P. Abarzua, A. Levin, and J. Grippo 1994. Distinct binding determinants for 9-cis retinoic acid are located within AF-2 of retinoic acid receptor α. Mol. Cell. Biol. 14:2323–2330.
  • Tsai, S., and J. Collins 1993. A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage. Proc. Natl. Acad. Sci. USA 90:7153–7157.
  • Tsai, S., S. Bartelmez, E. Sitnicka, and J. Collins 1994. Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant negative retinoic acid receptor can recapitulate lymphoid, myeloid and erythroid development. Genes Dev. 8:2831–2842.
  • Umesono, K., V. Giguere, C. Glass, M. Rosenfeld, and J. Evans 1988. Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature 336:262–265.
  • Umesono, K., K. Murakami, C. Thompson, and J. Evans 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid and vitamin D3 receptors. Cell 65:1255–1266.
  • Voegel, J., M. J. S. Heine, C. Zechel, P. Chambon, and J. Gronemeyer 1996. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15:3667–3675.
  • Vuligonda, V., Y. Lin, and J. Chandraratna 1996. Synthesis of highly potent RXR-specific retinoids: the use of a cyclopropyl group as a double bond isostere. Biorg. Med. Chem. Lett. 6:213–218.
  • Warrell, R., S. Frankel, W. Miller, L. Itri, M. Andreef, A. Jabukowski, J. Gabrilove, M. Gordon, and J. Dmitrovsky 1991. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans retinoic acid). N. Engl. J. Med. 324:1385–1390.
  • Westin, S., R. Kurokawa, R. Nolte, G. Wisely, E. McInerney, D. Rose, M. Milburn, M. Rosenfeld, and J. Glass 1998. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 395:199–202.
  • Willy, P., and J. Mangelsdorf 1997. Unique requirements for retinoid-dependent transcriptional activation by the orphan receptor LXR. Genes Dev. 11:289–298.
  • Yoshida, M., M. Kijima, M. Akita, and J. Beppu 1990. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265:17174–17179.
  • Zhang, Y., Z.-W. Sun, R. Iratni, H. Erdjument-Bromage, P. Tempst, M. Hampsey, and J. Reinberg 1998. SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol. Cell 1:1021–1031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.