2
Views
42
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Corepressor Required for Adenovirus E1B 55,000-Molecular-Weight Protein Repression of Basal Transcription

&
Pages 3403-3414 | Received 16 Dec 1998, Accepted 26 Jan 1999, Published online: 28 Mar 2023

REFERENCES

  • Alland, L., R. Muhle, H. Hou Jr., J. Potes, L. Chin, N. Schreiber-Agus, and J. DePinho 1997. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387:49–55.
  • Auble, D. T., K. E. Hansen, C. G. Mueller, W. S. Lane, J. Thorner, and J. Hahn 1994. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 8:1920–1934.
  • Austin, R. J., and J. Biggin 1995. A domain of the even-skipped protein represses transcription by preventing TFIID binding to a promoter: repression by cooperative blocking. Mol. Cell. Biol. 15:4683–4693.
  • Barberis, A., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinagel, C. Bamdad, G. Sigal, and J. Ptashne 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359–368.
  • Barker, D. D., and J. Berk 1986. Adenovirus proteins from both E1B open reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156:107–121.
  • Berk, A. J. 1995. Biochemistry meets genetics in the holoenzyme. Proc. Natl. Acad. Sci. USA 92:11952–11954.
  • Bischoff, J. R., D. H. Kirn, A. Williams, C. Heise, S. Horn, M. Muna, L. Ng, J. A. Nye, A. Sampson-Johannes, A. Fattaey, and J. McCormick 1996. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274:373–376.
  • Bryant, G. O., L. S. Martel, S. K. Burley, and J. Berk 1996. Radical mutations reveal TATA-box binding protein surfaces required for activated transcription in vivo. Genes Dev. 10:2491–2504.
  • Chao, D. M., E. L. Gadbois, P. J. Murray, S. F. Anderson, M. S. Sonu, J. D. Parvin, and J. Young 1996. A mammalian SRB protein assiociated with an RNA polymerase II holoenzyme. Nature 380:82–85.
  • Dignam, J. D., R. M. Lebovitz, and J. Roeder 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Dobbelstein, M., J. Roth, W. T. Kimberly, A. J. Levine, and J. Shenk 1997. Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO J. 16:4276–4284.
  • Dynlacht, B. D., T. Hoey, and J. Tjian 1991. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66:563–576.
  • Fondell, J. D., A. L. Roy, and J. Roeder 1993. Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for active repression. Genes Dev. 7:1400–1410.
  • Friedman, J. R., W. J. Fredericks, D. E. Jensen, D. W. Speicher, X. P. Huang, E. G. Neilson, F. J. Rauscher III.. 1996. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10:2067–2078.
  • Gabler, S., H. Scheutt, P. Groitl, H. Wolf, T. Shenk, and J. Dobner 1998. E1B 55-kilodalton-associated protein: a cellular protein with RNA-binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J. Virol. 72:7960–7971.
  • Greenblatt, J. 1997. RNA polymerase II holoenzyme and transcriptional regulation. Curr. Opin. Cell Biol. 9:310–319.
  • Gu, B., R. Kuddus, and J. DeLuca 1995. Repression of activator-mediated transcription by herpes simplex virus ICP4 via a mechanism involving interactions with the basal transcription factors TATA-binding protein and TFIIB. Mol. Cell. Biol. 15:3618–3626.
  • Gu, W., and J. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.
  • Ha, I., W. S. Lane, and J. Reinberg 1991. Cloning of a human gene encoding the general transcription initiation factor IIB. Nature 352:689–695.
  • Hassig, C. A., T. C. Fleischer, A. N. Billin, S. L. Schreiber, and J. Ayer 1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–347.
  • Hawley, D. K., and J. Roeder 1985. Separation and partial characterization of 3 functional steps in transcription initiation by human RNA polymerase-II. J. Biol. Chem. 260:8163–8172.
  • Heinzel, T., R. M. Lavinsky, T. M. Mullen, M. Soderstrom, C. D. Laherty, J. Torchia, W. M. Yang, G. Brard, S. D. Ngo, J. R. Davie, E. Seto, R. N. Eisenman, D. W. Rose, C. K. Glass, and J. Rosenfeld 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48.
  • Heise, C., A. Sampson-Johannes, A. Williams, F. McCormick, D. D. Von Hoff, and J. Kirn 1997. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 3:639–645.
  • Hengartner, C. J., C. M. Thompson, J. Zhang, D. M. Chao, S.-M. Liao, A. J. Koleske, S. Okamura, and J. Young 1995. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9:897–910.
  • Holstege, F. C., D. Tantin, M. Carey, P. C. van der Vliet, and J. Timmers 1995. The requirement for the basal transcription factor IIE is determined by the helical stability of promoter DNA. EMBO J. 14:810–819.
  • Ikeda, M., Y. Taya, and J. Prives 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334.
  • Inostroza, J. A., F. H. Mermelstein, I. Ha, W. S. Lane, and J. Reinberg 1992. Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70:477–489.
  • Jayaraman, J., and J. Prives 1995. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81:1021–1029.
  • Jiang, Y. W., P. R. Dohrmann, and J. Stillman 1995. Genetic and physical interactions between yeast RGR1 and SIN4 in chromatin organization and transcriptional regulation. Genetics 140:47–54.
  • Kadosh, D., and J. Struhl 1997. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365–371.
  • Kaiser, K., and J. Meisterernst 1996. The human general co-factors. Trends Biochem. Sci. 21:342–345.
  • Kao, C. C., P. R. Yew, and J. Berk 1990. Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins. Virology 179:806–814.
  • Kim, S. S., Y. M. Chen, E. O’Leary, R. Witzgall, M. Vidal, and J. Bonventre 1996. A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc. Natl. Acad. Sci. USA 93:15299–15304.
  • Kim, Y.-J., S. Bjorklund, Y. Li, M. H. Sayre, and J. Kornberg 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Ko, L. J., and J. Prives 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072.
  • Ko, L. J., S. Y. Shieh, X. Chen, L. Jayaraman, K. Tamai, Y. Taya, C. Prives, and J. Pan 1997. p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol. Cell. Biol. 17:7220–7229.
  • Kobayashi, N., T. G. Boyer, and J. Berk 1995. A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol. Cell. Biol. 15:6465–6473.
  • Kuchin, S., P. Yeghiayan, and J. Carlson 1995. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc. Natl. Acad. Sci. USA 92:4006–4010.
  • Laherty, C. D., W. M. Yang, J. M. Sun, J. R. Davie, E. Seto, and J. Eisenman 1997. Histone deacetylases associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89:349–356.
  • Lane, D. P. 1998. Killing tumor cells with viruses—a question of specificity. Nat. Med. 4:1012–1013.
  • Li, Y., S. Bjorklund, Y. W. Jiang, Y.-J. Kim, W. S. Lane, D. J. Stillman, and J. Kornberg 1995. Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex-RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 92:10864–10868.
  • Liao, S.-M., J. Zhang, D. A. Jeffery, A. J. Koleske, C. M. Thompson, D. M. Chao, M. Viljoen, H. J. J. van Vuuren, and J. Young 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374:193–196.
  • Lillie, J. W., and J. Green 1989. Transcription activation by the adenovirus E1a protein. Nature 338:39–44.
  • Lin, J., J. Chen, B. Elenbaas, and J. Levine 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8:1235–1246.
  • Lin, Y. S., M. F. Carey, M. Ptashne, and J. Green 1988. GAL4 derivatives function alone and synergistically with mammalian activators in vitro. Cell 54:659–664.
  • Lin, Y. S., and J. Green 1991. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64:971–981.
  • Liu, X., and J. Berk 1995. Reversal of in vitro p53 squelching by both TFIIB and TFIID. Mol. Cell. Biol. 15:6474–6478.
  • Luo, R. X., A. A. Postigo, and J. Dean 1998. Rb interacts with histone deacetylase to repress transcription. Cell 92:463–473.
  • Ma, D., H. Watanabe, F. Mermelstein, A. Admon, K. Oguri, X. Sun, T. Wada, T. Imai, T. Shiroya, D. Reinberg, and J. Handa 1993. Isolation of a cDNA encoding the largest subunit of TFIIA reveals functions important for activated transcription. Genes Dev. 7:2246–2257.
  • Maldonado, E., R. Shiekhattar, M. Sheldon, H. Cho, R. Drapkin, P. Rickert, E. Lees, C. W. Anderson, S. Linn, and J. Reinberg 1996. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381:86–89.
  • Martin, M. E. D. Unpublished results.
  • Martin, M. E. D., and J. Berk 1998. Adenovirus E1B 55K represses p53-activated transcription in vitro. J. Virol. 72:3146–3154.
  • Nagy, L., H. Y. Kao, D. Chakravarti, R. J. Lin, C. A. Hassig, D. E. Ayer, S. L. Schreiber, and J. Evans 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380.
  • Ossipow, V., J.-P. Tassan, E. A. Nigg, and J. Schibler 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:137–146.
  • Ozer, J., P. A. Moore, A. H. Bolden, A. Lee, C. A. Rosen, and J. Lieberman 1994. Molecular cloning of the small (g) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev. 8:2324–2335.
  • Parvin, J. D., B. M. Shykind, R. E. Meyers, J. Kim, and J. Sharp 1994. Multiple sets of basal factors initiate transcription by RNA polymerase II. J. Biol. Chem. 269:18414–18421.
  • Pazin, M. J., and J. Kadonaga 1997. What’s up and down with histone deacetylation and transcription? Cell 89:325–328.
  • Pengue, G., and J. Lania 1996. Kruppel-associated box-mediated repression of RNA polymerase II promoters is influenced by the arrangement of basal promoter elements. Proc. Natl. Acad. Sci. USA 93:1015–1020.
  • Peterson, M. G., J. Inostroza, M. E. Maxon, O. Flores, A. Admon, D. Reinberg, and J. Tjian 1991. Structure and functional properties of human general transcription factor IIE. Nature 354:369–373.
  • Rickert, P., W. Seghezzi, F. Shanahan, H. Cho, and J. Lees 1996. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12:2631–2640.
  • Roeder, R. G. 1996. The role of general transcription factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21:327–335.
  • Sarnow, P., Y. S. Ho, J. Williams, and J. Levine 1982. Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28:387–394.
  • Sauer, F., J. D. Fondell, Y. Ohkuma, R. G. Roeder, and J. Jackle 1995. Control of transcription by Kruppel through interactions with TFIIB and TFIIE β. Nature 375:162–164.
  • Shimizu, M., W. Li, H. Shindo, and J. Mitchell 1997. Transcriptional repression at a distance through exclusion of activator binding in vivo. Proc. Natl. Acad. Sci. USA 94:790–795.
  • Song, W., I. Treich, N. Qian, S. Kuchin, and J. Carlson 1996. SSN genes that affect transcriptional repression in Saccharomyces cerevisiae encode SIN4, ROX3, and SRB proteins associated with RNA polymerase II. Mol. Cell. Biol. 16:115–120.
  • Tantin, D., A. Kansal, and J. Carey 1997. Recruitment of the putative transcription repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell. Biol. 17:6803–6814.
  • Tassan, J. P., M. Jaquenoud, P. Leopold, S. J. Schultz, and J. Nigg 1995. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc. Natl. Acad. Sci. USA 92:8871–8875.
  • Teodoro, J. G., and J. Branton 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620–3627.
  • Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and J. Branton 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776–786.
  • Thompson, C. M., A. J. Koleske, D. M. Chao, and J. Young 1993. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73:1361–1375.
  • Thompson, N. E., D. B. Aronson, and J. Burgess 1990. Purification of eukaryotic RNA polymerase II by immunoaffinity chromatography. J. Biol. Chem. 265:7069–7077.
  • Thut, C. J., J. A. Goodrich, and J. Tjian 1997. Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes Dev. 11:1974–1986.
  • Um, M., C. Li, and J. Manley 1995. The transcriptional repressor even-skipped interacts directly with TATA-binding protein. Mol. Cell. Biol. 15:5007–5016.
  • Verrijzer, C. P., and J. Tjian 1996. TAFs mediate transcriptional activation and promoter selectivity. Trends Biochem. Sci. 9:338–342.
  • Wang, B. Q., C. F. Kostrub, A. Finkelstein, and J. Burton 1993. Production of human RAP30 and RAP74 in bacterial cells. Protein Expression Purification 4:207–214.
  • Wang, B. Q., L. Lei, and J. Burton 1994. Importance of codon preference for production of human RAP74 and reconstitution of the RAP30/74 complex. Protein Expression Purification 5:476–485.
  • Wang, Y., and J. Prives 1995. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376:88–91.
  • White, E. 1995. Regulation of p53-dependent apoptosis by E1A and E1B. Curr. Top. Microbiol. Immunol. 199:34–58.
  • Yew, P. R., and J. Berk 1992. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357:82–85.
  • Yew, P. R., X. Liu, and J. Berk 1994. Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev. 8:190–202.
  • Zantema, A., P. I. Schrier, A. Davis-Olivier, T. van Laar, R. T. Vaessen, and J. van der Eb 1985. Adenovirus serotype determines association and localization of the large E1B tumor antigen with cellular tumor antigen p53 in transformed cells. Mol. Cell. Biol. 11:3084–3091.
  • Zhang, Y., R. Iratni, H. Erdjument-Bromage, P. Tempst, and J. Reinberg 1997. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89:357–364.
  • Zhou, Q., P. M. Lieberman, T. G. Boyer, and J. Berk 1992. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev. 6:1964–1974.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.