12
Views
48
CrossRef citations to date
0
Altmetric
Gene Expression

The Saccharomyces cerevisiae Hyperrecombination Mutant hpr1Δ Is Synthetically Lethal with Two Conditional Alleles of the Acetyl Coenzyme A Carboxylase Gene and Causes a Defect in Nuclear Export of Polyadenylated RNA

, , , , &
Pages 3415-3422 | Received 20 Aug 1998, Accepted 12 Feb 1999, Published online: 28 Mar 2023

REFERENCES

  • Aguilera, A., and J. Klein 1989. Genetic and molecular analysis of recombination events in Saccharomyces cerevisiae occurring in the presence of the hyper-recombination mutation hpr1. Genetics 122:503–517.
  • Aguilera, A., and J. Klein 1988. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–790.
  • Aguilera, A., and J. Klein 1990. HPR1, a novel yeast gene that prevents intrachromosomal excision recombination, shows carboxy-terminal homology to the Saccharomyces cerevisiae TOP1 gene. Mol. Cell. Biol. 10:1439–1451.
  • Al-Feel, W., S. S. Chirala, and J. Wakil 1992. Cloning of the yeast FAS3 gene and primary structure of yeast acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. USA 89:4534–4538.
  • Archambault, J., F. Lacroute, A. Ruet, and J. Friesen 1992. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Mol. Cell. Biol. 12:4142–4152.
  • Aris, J. P., and J. Blobel 1988. Identification and characterization of a yeast nucleolar protein that is similar to a rat liver nucleolar protein. J. Cell Biol. 107:17–31.
  • Chang, M., D. French-Cornay, H. Fan, H. Klein, C. L. Denis, and J. Jaehning 1999. A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling. Mol. Cell. Biol. 19:1056–1067.
  • Chang, M., and J. Jaehning 1997. A multiplicity of mediators: alternative forms of transcription complexes communicate with transcriptional regulators. Nucleic Acids Res. 25:4861–4865.
  • Chavez, S., and J. Aguilera 1997. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev. 11:3459–3470.
  • Fan, H., and J. Klein 1994. Characterization of mutations that suppress the temperature sensitive growth of the hpr1Δ mutant of Saccharomyces cerevisiae. Genetics 137:945–956.
  • Fan, H.-Y., and H. L. Klein. Unpublished observation.
  • Fan, H. Y., K. K. Cheng, and J. Klein 1996. Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination mutant hpr1 delta of Saccharomyces cerevisiae. Genetics 142:749–759.
  • Feinberg, A. P., and J. Vogelstein 1984. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137:266–267.
  • Guerra, C. E., and J. Klein 1995. Mapping of the ACC1/FAS3 gene to the right arm of chromosome XIV of Saccharomyces cerevisiae. Yeast 11:697–700.
  • Hasslacher, M., A. S. Ivessa, F. Paltauf, and J. Kohlwein 1993. Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J. Biol. Chem. 268:10946–10952.
  • Hurt, E. C., A. Mutvei, and J. Carmo-Fonseca 1992. The nuclear envelope of the yeast Saccharomyces cerevisiae. Int. Rev. Cytol. 136:145–184.
  • Ivessa, A. S., R. Schneiter, and J. Kohlwein 1997. Yeast acetyl-CoA carboxylase is associated with the cytoplasmic surface of the endoplasmic reticulum. Eur. J. Cell Biol. 74:399–406.
  • Kadowaki, T., S. Chen, M. Hitomi, E. Jacobs, C. Kumagai, S. Liang, R. Schneiter, D. Singleton, J. Wisniewska, and J. Tartakoff 1994. Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants. J. Cell Biol. 126:649–659.
  • Kennedy, B. K., M. Gotta, D. A. Sinclair, K. Mills, D. S. McNabb, M. Murthy, S. M. Pak, T. Laroche, S. M. Gasser, and J. Guarente 1997. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89:381–391.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
  • Larkin, J. C., J. R. Thompson, J. L. Woolford Jr.. 1987. Structure and expression of the Saccharomyces cerevisiae CRY1 gene: a highly conserved ribosomal protein gene. Mol. Cell. Biol. 7:1764–1775.
  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and J. Randall 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  • Matsuhashi, M. 1969. Acetyl-CoA carboxylase from yeast. Methods Enzymol. 14:3–8.
  • Melese, T., and J. Xue 1995. The nucleolus: an organelle formed by the act of building a ribosome. Curr. Opin. Cell Biol. 7:319–324.
  • Oakes, M., J. P. Aris, J. S. Brockenbrough, H. Wai, L. Vu, and J. Nomura 1998. Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J. Cell Biol. 143:23–34.
  • Paltauf, F., S. D. Kohlwein, S. A. Henry 1992. Regulation and compartmentalization of lipid synthesis in yeast, p. 415–500. In E. W. Jones, J. R. Pringle, J. R. Broach (ed.), The molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Piruat, J. I., and J. Aguilera 1996. Mutations in the yeast SRB2 general transcription factor suppress hpr1-induced recombination and show defects in DNA repair. Genetics 143:1533–1542.
  • Roggenkamp, R., S. Numa, and J. Schweizer 1980. Fatty acid-requiring mutant of Saccharomyces cerevisiae defective in acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. USA 77:1814–1817.
  • Rose, M. D., F. Winston, F. Hieter 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Scheer, U., and J. Weisenberger 1994. The nucleolus. Curr. Opin. Cell Biol. 6:354–359.
  • Schneiter, R., M. Hitomi, A. S. Ivessa, E. V. Fasch, S. D. Kohlwein, and J. Tartakoff 1996. A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to the structure and function of the nuclear membrane-pore complex. Mol. Cell. Biol. 16:7161–7172.
  • Schneiter, R., T. Kadowaki, and J. Tartakoff 1995. mRNA transport in yeast: time to reinvestigate the functions of the nucleolus. Mol. Biol. Cell 6:357–370.
  • Schneiter, R., and J. Kohlwein 1997. Organelle structure, function, and inheritance in yeast: a role for fatty acid synthesis? Cell 88:431–434.
  • Shaw, P. J., and J. Jordan 1995. The nucleolus. Annu. Rev. Cell. Dev. Biol. 11:93–121.
  • Sherman, F., G. R. Fink, J. B. N. Hicks 1986. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Sinclair, D. A., and J. Guarente 1997. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042.
  • Sinclair, D. A., K. Mills, and J. Guarente 1998. Molecular mechanisms of yeast aging. Trends Biochem. Sci. 23:131–134.
  • Stutz, F., and J. Rosbash 1998. Nuclear RNA export. Genes Dev. 12:3303–3319.
  • Trash, C., A. T. Bankier, B. G. Barrell, and J. Sternglanz 1985. Cloning, characterization, and sequence of the yeast DNA topoisomerase I gene. Proc. Natl. Acad. Sci. USA 82:4374–4378.
  • Uemura, H., S. Pandit, Y. Jigami, and J. Sternglanz 1996. Mutations in GCR3, a gene involved in the expression of glycolytic genes in Saccharomyces cerevisiae, suppress the temperature-sensitive growth of hpr1 mutants. Genetics 142:1095–1103.
  • Vahlensieck, H. F., L. Pridzun, H. Reichenbach, and J. Hinnen 1994. Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A. Curr. Genet. 25:95–100.
  • Yaffe, M. P., and J. Schatz 1984. Two nuclear mutations that block mitochondrial protein import. Proc. Natl. Acad. Sci. USA 81:4819–4823.
  • Zhu, Y., C. L. Peterson, and J. Christman 1995. HPR1 encodes a global positive regulator of transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:1698–1708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.