24
Views
67
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Specific Acetylation of Chromosomal Protein HMG-17 by PCAF Alters Its Interaction with Nucleosomes

, , , , &
Pages 3466-3473 | Received 02 Dec 1998, Accepted 26 Jan 1999, Published online: 28 Mar 2023

REFERENCES

  • Alfonso, P. J., M. P. Crippa, J. J. Hayes, and J. Bustin 1994. The footprint of chromosomal proteins HMG-14 and HMG-17 on chromatin subunits. J. Mol. Biol. 236:189–198.
  • Allfrey, V. G., R. Faulkner, and J. Mirsky 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51:786–794.
  • Armstrong, J. A., and J. Emerson 1998. Transcription of chromatin: these are complex times. Curr. Opin. Genet. Dev. 8:165–172.
  • Ausio, J., F. Dong, and J. van Holde 1989. Use of selectively trypsinized nucleosome core particles to analyze the role of histone “tails” in the stabilization of nucleosomes. J. Mol. Biol. 206:451–463.
  • Braunstein, M., R. E. Sobel, C. D. Allis, B. M. Turner, and J. Broach 1996. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16:4349–4356.
  • Brownell, J. E., and J. Allis 1995. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl. Acad. Sci. USA 92:6364–6368.
  • Brownell, J. E., and J. Allis 1996. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 6:176–184.
  • Bustin, M. 1973. Arrangement of histones in chromatin. Nat. New Biol. 245:207–209.
  • Bustin, M., D. A. Lehn, and J. Landsman 1990. Structural features of the HMG chromosomal proteins and their genes. Biochim. Biophys. Acta 1049:231–243.
  • Bustin, M., and J. Reeves 1996. High mobility group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. 54:35–100.
  • Crippa, M. P., P. J. Alfonso, and J. Bustin 1992. Nucleosome core binding region of chromosomal protein HMG-17 acts as an independent functional domain. J. Mol. Biol. 228:442–449.
  • Crippa, M. P., L. Trieschmann, P. J. Alfonso, A. P. Wolffe, and J. Bustin 1993. Deposition of chromosomal protein HMG-17 during replication affects the nucleosomal ladder and transcriptional potential of nascent chromatin. EMBO J. 12:3855–3864.
  • Davie, J. R. 1998. Covalent modification of histones: expression from chromatin templates. Curr. Opin. Genet. Dev. 8:173–178.
  • Ding, H.-F., M. Bustin, and J. Hansen 1997. Alleviation of histone H1-mediated transcriptional repression and chromatin compaction by the acidic activation region of chromosomal protein HMG-14. Mol. Cell. Biol. 17:5843–5855.
  • Ding, H. F., S. Rimsky, S. C. Batson, M. Bustin, and J. Hansen 1994. Stimulation of RNA polymerase II elongation by chromosomal protein HMG-14. Science 265:796–799.
  • Fletcher, T. M., and J. Hansen 1996. The nucleosomal array: structure/function relationships. Crit. Rev. Eukaryot. Gene Expr. 6:149–188.
  • Garcia-Ramirez, M., C. Rocchini, and J. Ausio 1995. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 270:17923–17928.
  • Grant, P. A., L. Duggan, J. Cote, S. M. Roberts, J. Brownell, R. Candau, R. Ohba, T. Owen-Hughes, C. D. Allis, F. Winston, S. L. Berger, and J. Workman 1997. yGCN5 function within multisubunit ADA and SPT/ADA adapter complexes to acetylate nucleosomal histones. Genes Dev. 11:1640–1650.
  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389:349–352.
  • Hansen, J. C., and J. Ausio 1992. Chromatin dynamics and the modulation of genetic activity. Trends Biochem. Sci. 17:187–191.
  • Herrera, J. E., M. Bergel, X. J. Yang, Y. Nakatani, and J. Bustin 1997. The histone acetyltransferase activity of human GCN5 and PCAF is stabilized by coenzymes. J. Biol. Chem. 272:27253–27258.
  • Imhof, A., X. J. Yang, V. V. Ogryzko, Y. Nakatani, A. P. Wolffe, and J. Ge 1997. Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7:689–692.
  • Johns, E. W. 1982. The HMG chromosomal proteins. Academic Press, Inc., London, United Kingdom.
  • Kuo, M. H., J. E. Brownell, R. E. Sobel, T. A. Ranalli, R. G. Cook, D. G. Edmondson, S. Y. Roth, and J. Allis 1996. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383:269–272.
  • Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent, and J. Richmond 1997. Crystal structure of the nucleosome at 2.8 Å resolution. Nature 389:251–260.
  • Magnaghi-Jaulin, L., R. Grosiman, I. Naguibneva, P. Robin, S. Lorains, J. P. Le Villain, F. Troalen, D. Trouche, and J. Harel-Bellan 1998. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391:601–605.
  • Mardian, J. K., A. E. Paton, G. J. Bunick, and J. Olins 1980. Nucleosome cores have two specific binding sites for nonhistone chromosomal proteins HMG 14 and HMG 17. Science 209:1534–1536.
  • Marzluff, W. F. Jr., L. A. Sanders, D. M. Miller, and J. McCarty 1972. Two chemically and metabolically distinct forms of calf thymus histone F3. J. Biol. Chem. 247:2026–2033.
  • Mizzen, C. A., and J. Allis 1998. Linking histone acetylation to transcriptional regulation. Cell Mol. Life Sci. 54:6–20.
  • Mizzen, C. A., X.-J. Yang, T. Kokuba, J. E. Brownell, A. J. Banister, T. Owen-Hughes, J. C. Workman, L. Wang, S. L. Berger, T. Kouzarides, Y. Nakatani, and J. Allis 1996. The TAF250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270.
  • Ogryzko, V. V., R. L. Sciltz, V. Russanova, B. H. Howard, and J. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • O’Neill, L. P., and J. Turner 1995. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14:3946–3957.
  • Paranjape, S. M., R. T. Kamakaka, and J. Kadonaga 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–297.
  • Paranjape, S. M., A. Krumm, and J. Kadonaga 1995. HMG17 is a chromatin-specific transcriptional coactivator that increases the efficiency of transcription initiation. Genes Dev. 9:1978–1991.
  • Postnikov, Y. V., J. E. Herrera, R. Hock, U. Scheer, and J. Bustin 1997. Clusters of nucleosomes containing chromosomal protein HMG-17 in chromatin. J. Mol. Biol. 274:454–465.
  • Postnikov, Y. V., D. A. Lehn, R. C. Robinson, F. K. Friedman, J. Shiloach, and J. Bustin 1994. The cooperative binding of chromosomal protein HMG-14 to nucleosome cores is reduced by single point mutations in the nucleosomal binding domain. Nucleic Acids Res. 22:4520–4526.
  • Postnikov, Y. V., L. Trieschmann, A. Rickers, and J. Bustin 1995. Homodimers of chromosomal proteins HMG-14 and HMG-17 in nucleosome cores. J. Mol. Biol. 252:423–432.
  • Romani, M., T. C. Rodman, G. Vidali, and J. Bustin 1979. Serological analysis of the specificity of HMG chromosomal proteins. J. Biol. Chem. 254:2918–2922.
  • Roth, S. Y., and J. Allis 1996. Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell 87:5–8.
  • Rundlet, S. E., A. A. Carmen, S. Noriyuki, B. M. Turner, and J. Grunstein 1998. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835.
  • Sandeen, G., W. I. Wood, and J. Felsenfeld 1980. The interaction of high mobility proteins HMG14 and 17 with nucleosomes. Nucleic Acids Res. 8:3757–3778.
  • Sterner, R., G. Vidali, and J. Allfrey 1979. Studies on the acetylation and deacetylation of HMG proteins. J. Biol. Chem. 254:11577–11583.
  • Sterner, R., G. Vidali, and J. Allfrey 1981. Studies on the acetylation and deacetylation of HMG proteins: identification of the sites of acetylation of HMG-14 and HMG-17. J. Biol. Chem. 256:8892–8895.
  • Struhl, K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12:599–606.
  • Tremethick, D. J., and J. Hyman 1996. High mobility group proteins 14 and 17 can prevent the close packing of nucleosomes by increasing the strength of protein contacts in the linker DNA. J. Biol. Chem. 271:12009–12016.
  • Trieschmann, L., P. J. Alfonso, M. P. Crippa, A. P. Wolffe, and J. Bustin 1995. Incorporation of chromosomal proteins HMG-14/-17 into nascent nucleosomes induces an extended chromatin conformation and enhances the utilization of active transcription complexes. EMBO J. 14:1478–1489.
  • Trieschmann, L., B. Martin, and J. Bustin 1998. The chromatin unfolding domain of chromosomal protein HMG-14 targets the N-terminal tail of histone H3 in nucleosomes. Proc. Natl. Acad. Sci. USA 95:5468–5473.
  • Trieschmann, L., Y. V. Postnikov, A. Rickers, and J. Bustin 1995. Modular structure of chromosomal proteins HMG-14 and HMG-17: definition of a transcriptional activation domain distinct from the nucleosomal binding domain. Mol. Cell. Biol. 15:6663–6669.
  • Turner, B. M., and J. O’Neill 1995. Histone acetylation in chromatin and chromosomes. Semin. Cell Biol. 6:229–236.
  • Vestner, B., M. Bustin, and J. Gruss 1998. Stimulation of replication efficiency of a chromatin template by chromosomal protein HMG-17. J. Biol. Chem. 273:9409–9414.
  • Vettese-Dadey, M., P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. Workman 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15:2508–2518.
  • Wade, P. A., D. Pruss, and J. Wolffe 1997. Histone acetylation: chromatin in action. Trends Biochem. Sci. 22:128–132.
  • Yang, X.-J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and J. Nakatani 1996. A p300/CBP-associated factor that competes with adenoviral oncoprotein E1A. Nature 382:319–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.