65
Views
464
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Transcriptional Cross Talk between NF-κB and p53

&
Pages 3485-3495 | Received 29 Jul 1998, Accepted 12 Feb 1999, Published online: 28 Mar 2023

REFERENCES

  • Allday, M. J., G. J. Inman, D. H. Crawford, and J. Farrell 1995. DNA-damage in human B-cells can induce apoptosis, proceeding from G(1)/S when P53 is transactivation competent and G(2)/M when it is transactivation defective. EMBO J. 14:4994–5005.
  • Avantaggiati, M. L., V. Ogryzko, K. Gardner, A. Giordano, A. S. Levine, and J. Kelly 1997. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89:1175–1184.
  • Baldwin, A. S. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–681.
  • Bannister, A. J., T. Oehler, D. Wilhelm, P. Angel, and J. Kouzarides 1995. Stimulation of c-Jun activity by CBP, c-Jun residues Ser63/73 are required for CBP induced stimulation in vivo and CBP binding in vitro. Oncogene 11:2509–2514.
  • Bargou, R. C., F. Emmerich, D. Krappmann, K. Bommert, M. Y. Mapara, W. Arnold, H. D. Royer, E. Grinstein, A. Greiner, C. Scheidereit, and J. Dorken 1997. Constitutive nuclear factor-kappa B-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J. Clin. Investig. 100:2961–2969.
  • Beg, A. A., and J. Baltimore 1996. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274:782–784.
  • Beg, A. A., W. C. Sha, R. T. Bronson, S. Ghosh, and J. Baltimore 1995. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376:167–170.
  • Berger, S. L., B. Pina, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and J. Guarente 1992. Genetic isolation of Ada2—a potential transcriptional adapter required for function of certain acidic activation domains. Cell 70:251–265.
  • Bertrand, F., A. Atfi, A. Cadoret, G. Lallemain, H. Robin, O. Lascols, J. Capeau, and J. Cherqui 1998. A role for nuclear factor kappa B in the antiapoptotic function of insulin. J. Biol. Chem. 273:2931–2938.
  • Caelles, C., J. M. Gonzalez-Sancho, and J. Munoz 1997. Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev. 11:3351–3364.
  • Caelles, C., A. Helmberg, and J. Karin 1994. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370:220–223.
  • Chakravarti, D., V. J. LaMorte, M. C. Nelson, T. Nakajima, I. G. Schulman, T. Juguilon, M. Montminy, and J. Evans 1996. Role of CBP/p300 in nuclear receptor signalling. Nature 383:99–103.
  • Chen, H., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and J. Evans 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complexed with P/CAF and CBP/p300. Cell 90:569–580.
  • Deng, C., P. Zhang, J. W. Harper, S. J. Elledge, and J. Leder 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684.
  • Devary, Y., C. Rosette, J. A. DiDonato, and J. Karin 1993. NF-κB activation by ultraviolet light is not dependent on a nuclear signal. Science 261:1442–1445.
  • Dignam, J. D., R. M. Lebovitz, and J. Roeder 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Donato, N. J., and J. Perez 1998. Tumor necrosis factor-induced apoptosis stimulates p53 accumulation and p21WAF1 proteolysis in ME-180 cells. J. Biol. Chem. 273:5067–5072.
  • Eck, S. L., N. D. Perkins, D. P. Carr, and J. Nabel 1993. Inhibition of phorbol ester-induced cellular adhesion by competitive binding of NF-κB in vivo. Mol. Cell. Biol. 13:6530–6536.
  • el-Deiry, W. S., J. W. Harper, P. M. O’Connor, V. E. Velculescu, C. E. Canman, J. Jackman, J. A. Pietenpol, M. Burrell, D. E. Hill, Y. Wang, K. G. Wiman, W. E. Mercer, M. B. Kastan, K. W. Kohn, S. J. Elledge, K. W. Kinzler, and J. Vogelstein 1994. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54:1169–1174.
  • el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and J. Vogelstein 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Gerritsen, M. E., A. J. Williams, A. S. Neish, S. Moore, Y. Shi, and J. Collins 1997. CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA 94:2927–2932.
  • Glass, C. K., D. W. Rose, and J. Rosenfeld 1997. Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9:222–232.
  • Grossman, S. R., M. Perez, A. L. Kung, M. Joseph, C. Mansur, Z. X. Xiao, S. Kumar, P. M. Howley, and J. Livingston 1998. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2:405–415.
  • Gu, W., X. L. Shi, and J. Roeder 1997. Synergistic activation of transcription by CBP and p53. Nature 387:819–823.
  • Gualberto, A., M. L. Hixon, T. S. Finco, N. D. Perkins, G. J. Nabel, A. S. Baldwin Jr.. 1995. A proliferative p53-responsive element mediates tumor necrosis factor alpha induction of the human immunodeficiency virus type 1 long terminal repeat. Mol. Cell. Biol. 15:3450–3459.
  • Hall, P. A., D. Meek, and J. Lane 1996. p53—integrating the complexity. J. Pathol. 180:1–5.
  • Heery, D. M., E. Kalkhoven, S. Hoare, and J. Parker 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptor. Nature 387:733–736.
  • Horvai, A. E., L. Xu, E. Korzus, G. Brard, D. Kalafus, T. Mullen, D. W. Rose, M. G. Rosenfeld, and J. Glass 1997. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc. Natl. Acad. Sci. USA 94:1074–1079.
  • Horvai, A. E., L. Xu, E. Korzus, G. Brard, D. Kalafus, T. M. Mullen, D. W. Rose, M. G. Rosenfeld, and J. Glass 1997. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc. Natl. Acad. Sci. USA 94:1074–1079.
  • Hottiger, M. O., L. K. Felzien, and J. Nabel 1998. Modulation of cytokine-induced HIV gene expression by the competitive binding of transcription factors to the coactivator p300. EMBO J. 17:3124–3134.
  • Hupp, T. R., D. W. Meek, C. A. Midgley, and J. Lane 1993. Activation of the cryptic DNA-binding function of mutant forms of p53. Nucleic Acids Res. 21:3167–3174.
  • Israel, A. 1997. Signal transduction—IκB kinase all zipped up. Nature 388:519–521.
  • Jiang, H., J. Lin, Z. Su, F. R. Collart, E. Huberman, and J. Fisher 1994. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 9:3397–3406.
  • Jung, M., Y. Zhang, S. Lee, and J. Dritschilo 1995. Correction of radiation sensitivity in ataxia-telangiectasia cells by a truncated IκB-α. Science 268:1619–1621.
  • Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S. C. Lin, R. A. Heyman, D. W. Rose, C. K. Glass, and J. Rosenfeld 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414.
  • Klefstrom, J., E. Arighi, T. Littlewood, M. Jaattela, E. Saksela, G. I. Evan, and J. Alitalo 1997. Induction of TNF-sensitive cellular phenotype by c-myc involves p53 and impaired NF-κB activation. EMBO J. 16:7382–7392.
  • Ko, L. J., and J. Prives 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072.
  • Krikos, A., C. D. Laherty, and J. Dixit 1992. Transcriptional activation of the tumor-necrosis-factor α inducible zinc finger protein, A20, is mediated by κB elements. J. Biol. Chem. 267:17971–17976.
  • Lane, D. P., and J. Hall 1997. MDM2—arbiter of p53’s destruction. Trends Biochem. Sci. 22:372–374.
  • Lee, C. W., T. S. Sorensen, N. Shikama, and J. LaThangue 1998. Functional interplay between p53 and E2F through co-activator p300. Oncogene 16:2695–2710.
  • Leung, K., and J. Nabel 1988. HTLV-I transactivator induces interleukin-2 receptor expression through an NF-κB-like factor. Nature 333:776–778.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Lill, N. L., S. R. Grossman, D. Ginsberg, J. DeCaprio, and J. Livingston 1997. Binding and modulation of p53 by p300/CBP coactivators. Nature 387:823–827.
  • Liu, Z., H. Hsu, D. V. Goeddel, and J. Karin 1996. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87:565–576.
  • Maniatis, T. 1997. Signal transduction—catalysis by a multiprotein IκB kinase complex. Science 278:818–819.
  • Mayo, M. W., C. Y. Wang, P. C. Cogswell, K. S. Rogers-Graham, S. W. Lowe, C. J. Der, A. S. Baldwin Jr.. 1997. Requirement of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278:1812–1815.
  • Merika, M., A. J. Williams, G. Y. Chen, T. Collins, and J. Thanos 1998. Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol. Cell 1:277–287.
  • Mink, S., B. Haenig, and J. Klempnauer 1997. Interaction and functional collaboration of p300 and C/EBPβ. Mol. Cell. Biol. 17:6609–6617.
  • Miyashita, T., and J. Reed 1995. Tumor-suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299.
  • Mukhopadhyay, T., J. A. Roth, and J. Maxwell 1996. Induction of p53 DNA-binding activity by tumor-necrosis-factor-alpha. Int. J. Oncol. 9:715–720.
  • Na, S. Y., S. K. Lee, S. J. Han, H. S. Choi, S. Y. Im, and J. Lee 1998. Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappa B-mediated transactivations. J. Biol. Chem. 273:10831–10834.
  • Nakajima, T., A. Fukamizu, J. Takahashi, F. H. Gage, T. Fisher, J. Blenis, and J. Montminy 1996. The signal-dependent coactivator CBP is a nuclear target for pp90rsk. Cell 86:465–474.
  • Nakshatri, H., P. Bhat-Nakshatri, D. A. Martin, R. J. Goulet Jr., G. W. Sledge Jr.. 1997. Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol. 17:3629–3639.
  • Natesan, S., V. M. Rivera, E. Molinari, and J. Gilman 1997. Transcriptional squelching re-examined. Nature 390:349–350.
  • Osborn, L., S. Kunkel, and J. Nabel 1989. Tumor necrosis factor a and interleukin-1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor κB. Proc. Natl. Acad. Sci. USA 86:2336–2340.
  • Perkins, N. D. 1997. Achieving transcriptional specificity with NF-kappaB. Int. J. Biochem. Cell Biol. 29:1433–1448.
  • Perkins, N. D., A. B. Agranoff, E. Pascal, and J. Nabel 1994. An interaction between the DNA-binding domains of RelA(p65) and Sp1 mediates human immunodeficiency virus gene activation. Mol. Cell. Biol. 14:6570–6583.
  • Perkins, N. D., L. K. Felzien, J. C. Betts, K. Leung, D. H. Beach, and J. Nabel 1997. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275:523–527.
  • Perkins, N. D., R. M. Schmid, C. S. Duckett, K. Leung, N. R. Rice, and J. Nabel 1992. Distinct combinations of NF-κB subunits determine the specificity of transcriptional activation. Proc. Natl. Acad. Sci. USA 89:1529–1533.
  • Polyak, K., Y. Xia, J. L. Zweier, K. W. Kinzler, and J. Vogelstein 1997. A model for p53-induced apoptosis. Nature 389:300–305.
  • Ravi, R., B. Mookerjee, Y. van Hensbergen, G. C. Bedi, A. Giordano, W. S. El-Deiry, E. J. Fuchs, and J. Bedi 1998. p53-mediated repression of nuclear factor-kappa B RelA via the transcriptional integrator p300. Cancer Res. 58:4531–4536.
  • Reuther, J. Y., G. W. Reuther, D. Cortez, A. M. Pendergast, and J. Baldwin 1998. A requirement for NF-κB activation in Bcr-Abl-mediated transformation. Genes Dev. 12:968–981.
  • Shikama, N., J. Lyon, and J. La Thangue 1997. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Curr. Biol. 7:230–236.
  • Siebenlist, U., G. Franzoso, and J. Brown 1994. Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol. 10:405–455.
  • Smith, C. L., S. A. Onate, M. J. Tsai, and J. O’Malley 1996. CREB binding-protein acts synergistically with steroid-receptor coactivator-1 to enhance steroid receptor-dependent transcription. Proc. Natl. Acad. Sci. USA 93:8884–8888.
  • Somasundaram, K., and J. El-Deiry 1997. Inhibition of p53-mediated transactivation and cell cycle arrest by E1A through its p300/CBP-interacting region. Oncogene 14:1047–1057.
  • Spencer, T. E., G. Jenster, M. M. Burcin, C. D. Allis, J. X. Zhou, C. A. Mizzen, N. J. McKenna, S. A. Onate, S. Y. Tsai, M. J. Tsai, and J. O’Malley 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198.
  • Stancovski, I., and J. Baltimore 1997. NF-κB activation: the IκB kinase revealed? Cell 91:299–302.
  • Stein, B., A. S. Baldwin Jr., D. W. Ballard, W. C. Greene, P. Angel, and J. Herrlich 1993. Cross-coupling of the NF-κB p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J. 12:3879–3891.
  • Stein, B., P. C. Cogswell, A. S. Baldwin Jr.. 1993. Functional and physical associations between NF-κB and C/EBP family members: a Rel domain-bZIP interaction. Mol. Cell. Biol. 13:3964–3974.
  • Tanaka, Y., I. Naruse, T. Maekawa, H. Masuya, T. Shiroishi, and J. Ishii 1997. Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc. Natl. Acad. Sci. USA 94:10215–10220.
  • Torchia, J., D. W. Rose, J. Inostroza, Y. Kamei, S. Westin, C. K. Glass, and J. Rosenfeld 1997. The transcriptional coactivator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684.
  • Van Antwerp, D. J., S. J. Martin, T. Kafri, D. R. Green, and J. Verma 1996. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274:787–789.
  • Verma, I. M., and J. Stevenson 1997. IκB kinase: beginning, not the end. Proc. Natl. Acad. Sci. USA 94:11758–11760.
  • Vojtesek, B., H. Dolezalova, L. Lauerova, M. Svitakova, P. Havlis, J. Kovarik, C. A. Midgley, and J. Lane 1995. Conformational-changes in p53 analyzed using new antibodies to the core DNA-binding domain of the protein. Oncogene 10:389–393.
  • Wang, C., M. W. Mayo, and J. Baldwin 1996. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274:784–787.
  • Wang, C. Y., M. W. Mayo, R. G. Korneluk, D. V. Goeddel, and J. Baldwin 1998. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683.
  • Wathelet, M. G., C. H. Lin, B. S. Parekh, L. V. Ronco, P. M. Howley, and J. Maniatis 1998. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol. Cell 1:507–518.
  • Wood, K. M., M. Roff, and J. Hay 1998. Defective IκBα in Hodgkin cell lines with constitutively active NF-κB. Oncogene 16:2131–2139.
  • Wu, B. Y., C. Woffendin, I. MacLachlan, and J. Nabel 1997. Distinct domains of IκB-α inhibit human immunodeficiency virus type 1 replication through NF-κB and Rev. J. Virol. 71:3161–3167.
  • Wu, M., H. Lee, R. E. Bellas, S. L. Schauer, M. Arsura, D. Katz, M. J. FitzGerald, T. L. Rothstein, D. H. Sherr, and J. Sonenshein 1996. Inhibition of NF-κB/Rel induces apoptosis of murine B cells. EMBO J. 15:4682–4690.
  • Wu, M. X., Z. H. Ao, K. V. S. Prasad, R. L. Wu, and J. Schlossman 1998. IEX-1L, an apoptosis inhibitor involved in NF-κB-mediated cell survival. Science 281:998–1001.
  • Yan, Y., J. W. Shay, W. E. Wright, and J. Mumby 1997. Inhibition of protein phosphatase activity induces p53-dependent apoptosis in the absence of p53 transactivation. J. Biol. Chem. 272:15220–15226.
  • Yang, X., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and J. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.
  • Yao, T., G. Ku, N. Zhou, R. Scully, and J. Livingston 1996. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl. Acad. Sci. USA 93:10626–10631.
  • Yao, T. P., S. P. Oh, M. Fuchs, N. D. Zhou, L. E. Ch’ng, D. Newsome, R. T. Bronson, E. Li, D. M. Livingston, and J. Eckner 1998. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93:361–372.
  • Zhong, H. H., R. E. Voll, and J. Ghosh 1998. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1:661–671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.