57
Views
200
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

CREB-Binding Protein Acetylates Hematopoietic Transcription Factor GATA-1 at Functionally Important Sites

, , , &
Pages 3496-3505 | Received 15 Dec 1998, Accepted 12 Feb 1999, Published online: 28 Mar 2023

REFERENCES

  • Abraham, S. E., S. Lobo, P. Yaciuk, H. G. Wang, and J. Moran 1993. p300, and p300-associated proteins, are components of TATA-binding protein (TBP) complexes. Oncogene 8:1639–1647.
  • Allfrey, V., R. M. Faulkner, and J. Mirsky 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51:786–794.
  • Bannister, A. J., and J. Kouzarides 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643.
  • Blobel, G. A., T. Nakajima, R. Eckner, M. Montminy, and J. Orkin 1998. CREB-binding protein (CBP) cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc. Natl. Acad. Sci. USA 95:2061–2066.
  • Blobel, G. A., C. A. Sieff, and J. Orkin 1995. Ligand-dependent repression of the erythroid transcription factor GATA-1 by the estrogen receptor. Mol. Cell. Biol. 15:3147–3153.
  • Blobel, G. A., M. C. Simon, and J. Orkin 1995. Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins. Mol. Cell. Biol. 15:626–633.
  • Boyes, J., P. Byfield, Y. Nakatani, and J. Ogryzko 1998. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396:594–598.
  • Brownell, J. E., J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmondson, S. Y. Roth, and J. Allis 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851.
  • Chen, H., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and J. Evans 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580.
  • Cho, H., G. Orphanides, X. Sun, X. J. Yang, V. Ogryzko, E. Lees, Y. Nakatani, and J. Reinberg 1998. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18:5355–5363.
  • Crossley, M., M. Merika, and J. Orkin 1995. Self-association of the erythroid transcription factor GATA-1 mediated by its zinc finger domains. Mol. Cell. Biol. 15:2448–2456.
  • Dallas, P. B., P. Yaciuk, and J. Moran 1997. Characterization of monoclonal antibodies raised against p300: both p300 and CBP are present in intracellular TBP complexes. J. Virol. 71:1726–1731.
  • Edmondson, D. G., M. M. Smith, and J. Roth 1996. Repression domain of the yeast global repressor Tup1 interacts directly with histone H3 and H4. Genes Dev. 10:1247–1259.
  • Fujiwara, Y., C. P. Browne, K. Cunniff, S. C. Goff, and J. Orkin 1996. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl. Acad. Sci. USA 93:12355–12358.
  • Grant, P. A., L. Duggan, J. Cote, S. M. Roberts, J. E. Brownell, R. Candau, R. Ohba, T. Owen-Hughes, C. D. Allis, F. Winston, S. L. Berger, and J. Workman 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones:characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11:1640–1650.
  • Gu, W., and J. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.
  • Hebbes, T. R., A. L. Clayton, A. W. Thorne, and J. Crane-Robinson 1994. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13:1823–1830.
  • Hebbes, T. R., C. H. Turner, A. W. Thorne, and J. Crane-Robinson 1989. A “minimal epitope” anti-protein antibody that recognises a single modified amino acid. Mol. Immunol. 26:865–873.
  • Imhof, A., X. J. Yang, V. V. Ogryzko, Y. Nakatani, A. P. Wolfe, and J. Ge 1997. Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7:689–692.
  • Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S. Lin, R. A. Heyman, D. Rose, C. K. Glass, and J. Rosenfeld 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414.
  • Kee, B., J. Arias, and J. Montminy 1996. Adaptor mediated recruitment of RNA polymerase II to a signal dependent activator. J. Biol. Chem. 271:2373–2375.
  • Korzus, E., J. Torchia, D. W. Rose, L. Xu, R. Kurokawa, E. M. McInerney, T.-M. Mullen, C. K. Glass, and J. Rosenfeld 1998. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279:703–707.
  • Kwok, R. P., J. R. Lunblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, R. G. Brennan, S. G. Roberts, M. R. Green, and J. Goodman 1994. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223–226.
  • Li, Q., M. Herrler, N. Landsberger, N. Kaludov, V. V. Ogryzko, Y. Nakatani, and J. Wolffe 1998. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J. 17:6300–6315.
  • Martin, D. I., and J. Orkin 1990. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf1. Genes Dev. 4:1886–1898.
  • Martinez-Balbas, M., A. Bannister, K. Martin, P. Haus-Seuffert, M. Meisternst, and J. Kouzarides 1998. The acetyltransferase activity of CBP stimulates transcription. EMBO J. 17:2886–2893.
  • Nakajima, T., C. Uchida, S. F. Anderson, C.-G. Lee, J. Hurwitz, J. D. Parvin, and J. Montminy 1997. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90:1107–1112.
  • Ogryzko, V. V., L. R. Schiltz, V. Russanova, B. H. Howard, and J. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Omichinsky, J. G., G. M. Clore, O. Schaad, G. Felsenfeld, C. Trainor, E. Appella, S. J. Stahl, and J. Gronenborn 1993. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science 261:438–446.
  • Orkin, S. H. 1992. GATA-binding transcription factors in hematopoietic cells. Blood 80:575–581.
  • Pazin, M. J., and J. Kadonaga 1997. What’s up and down with histone deacetylation and transcription. Cell 89:325–328.
  • Pear, W. S., G. P. Nolan, M. L. Scott, and J. Baltimore 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90:8392–8396.
  • Pogo, P. G. T., V. G. Allfrey, and J. Mirsky 1966. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc. Natl. Acad. Sci. USA 55:805–812.
  • Reid, J. L., A. J. Bannister, P. Zegerman, M. A. Martinez-Balbas, and J. Kouzarides 1998. E1A directly binds and regulates the P/CAF acetyltransferase. EMBO J. 17:4469–4477.
  • Roth, S. Y., and J. Allis 1996. Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell 87:5–8.
  • Sakaguchi, K., J. E. Herrera, S. Saito, T. Miki, M. Bustin, A. Vassilev, C. W. Anderson, and J. Appella 1998. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12:2831–2841.
  • Sang, N., M. L. Avantaggiati, and J. Giordano 1997. Roles of p300, pocket proteins, and hTBP in E1A-mediated transcriptional regulation and inhibition of p53 transactivation activity. J. Cell. Biochem. 66:277–285.
  • Shikama, N., J. Lyon, and J. LaThangue 1997. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7:230–236.
  • Spencer, T. E., G. Jenster, M. M. Burcin, C. D. Allis, J. Zhou, C. A. Mizzen, N. J. McKenna, S. A. Onate, S. Y. Tsai, M. J. Tsai, and J. O’Malley 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198.
  • Swope, D. L., C. L. Mueller, and J. Chrivia 1996. CREB-binding protein activates transcription through multiple domains. J. Biol. Chem. 271:28138–28145.
  • Tsang, A. P., E. Visvader, C. A. Turner, Y. Fujiwara, C. Yu, M. J. Weiss, M. Crossley, and J. Orkin 1997. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90:109–119.
  • Visvader, J. E., M. Crossley, J. Hill, and J. Orkin 1995. The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce differentiation of an early myeloid cell line. Mol. Cell. Biol. 15:634–641.
  • Weiss, M. J., G. Keller, and J. Orkin 1994. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1− embryonic stem cells. Genes Dev. 8:1184–1197.
  • Weiss, M. J., and J. Orkin 1995. Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc. Natl. Acad. Sci. USA 92:9623–9627.
  • Weiss, M. J., C. Yu, and J. Orkin 1997. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene targeted cell line. Mol. Cell. Biol. 17:1642–1651.
  • Yang, X.-J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and J. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.
  • Yao, T.-P., G. Ku, N. Zhou, R. Scully, and J. Livingston 1996. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl. Acad. Sci. USA 93:10626–10631.
  • Zhang, W., and J. Bieker 1998. Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc. Natl. Acad. Sci. USA 95:9855–9860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.