24
Views
105
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Yeast Mutants Affecting Possible Quality Control of Plasma Membrane Proteins

, , , &
Pages 3588-3599 | Received 21 Sep 1998, Accepted 30 Jan 1999, Published online: 28 Mar 2023

REFERENCES

  • Anderson, M. T., I. M. Tjioe, M. C. Lorincz, D. R. Parks, L. A. Herzenberg, G. P. Nolan, and J. Herzenberg 1996. Simultaneous fluorescence-activated cell sorter analysis of two distinct transcriptional elements within a single cell using engineered green fluorescent proteins. Proc. Natl. Acad. Sci. USA 93:8508–8511.
  • Antebi, A., and J. Fink 1992. The yeast Ca2+ ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol. Biol. Cell 3:633–654.
  • Babst, M., and S. Emr. Personal communication.
  • Babst, M., B. Wendland, E. J. Estepa, and J. Emr 1998. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17:2982–2993.
  • Biwersi, J., N. Emans, and J. Verkman 1996. Cystic fibrosis transmembrane conductance regulator activation stimulates endosome fusion in vivo. Proc. Natl. Acad. Sci. USA 93:12484–12489.
  • Chang, A., and J. Fink 1995. Targeting of the yeast plasma membrane [H+]ATPase: a novel gene AST1 prevents mislocalization of mutant ATPase to the vacuole. J. Cell Biol. 128:39–49.
  • Cooper, A. A., and J. Stevens 1996. Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J. Cell Biol. 133:529–541.
  • Davis, N. G., J. L. Horecka, G. F. Sprague Jr.. 1993. cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. J. Cell Biol. 122:53–65.
  • Futter, C. E., A. Pearse, L. J. Hewlett, and J. Hopkins 1996. Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132:1011–1023.
  • Gaxiola, R. A., D. S. Yuan, R. D. Klausner, and J. Fink 1998. The yeast CLC chloride channel functions in cation homeostasis. Proc. Natl. Acad. Sci. USA 95:4046–4050.
  • Gerdes, H.-H., and J. Kaether 1996. Green fluorescent protein: applications in cell biology. FEBS Lett. 389:44–47.
  • Greene, J. R., N. H. Brown, B. J. DiDomenico, J. Kaplan, and J. Eide 1993. The GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growth. Mol. Gen. Genet. 241:542–553.
  • Hartwell, L. H. 1980. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J. Cell Biol. 85:811–822.
  • Hechenberger, M., B. Schwappach, W. N. Fischer, W. B. Frommer, T. J. Jentsch, and J. Steinmeyer 1996. A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J. Biol. Chem. 271:33632–33638.
  • Hicke, L., and J. Riezman 1996. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287.
  • Hirschman, J., G. DeZutter, W. Simonds, and J. Jenness 1997. The Gβγ complex of the yeast pheromone response pathway: subcellular fractionation and protein-protein interaction. J. Biol. Chem. 272:240–248.
  • Hong, E., A. R. Davidson, and J. Kaiser 1996. A pathway for targeting soluble misfolded proteins to the yeast vacuole. J. Cell Biol. 135:623–633.
  • Hsu, V. W., L. C. Yuan, J. G. Nuchtern, J. Lippincott-Schwartz, G. J. Hammerling, and J. Klausner 1991. A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature 352:441–444.
  • Hwa, J., P. Garriga, X. Liu, and J. Khorana 1997. Structure and function in rhodopsin: packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain are coupled. Proc. Natl. Acad. Sci. USA 94:10571–10576.
  • Jenness, D. D., B. S. Goldman, and J. Hartwell 1987. Saccharomyces cerevisiae mutants unresponsive to α-factor pheromone: α-factor binding and extragenic suppression. Mol. Cell. Biol. 7:1311–1319.
  • Jenness, D. D., Y. Li, C. Tipper, and J. Spatrick 1997. Elimination of defective α-factor pheromone receptors. Mol. Cell. Biol. 17:6236–6245.
  • Jenness, D. D., and J. Spatrick 1986. Down regulation of the α-factor pheromone receptor in S. cerevisiae. Cell 46:345–353.
  • Jones, E. W., G. C. Webb, and J. Hiller 1997. Biogenesis and function of the yeast vacuole The molecular and cellular biology of the yeast Saccharomyces In J. R. Pringle, J. R. Broach, E. W. Jones (ed.), III:363–470 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Katz, M. E., J. Ferguson, and J. Reed 1987. Temperature-sensitive lethal pseudorevertants of ste mutations in Saccharomyces cerevisiae. Genetics 115:627–636.
  • Kaushal, S., and J. Khorana 1994. Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry 33:6121–6128.
  • Konopka, J. B., D. D. Jenness, and J. Hartwell 1988. The C-terminus of the S. cerevisiae α-pheromone receptor mediates an adaptive response to pheromone. Cell 54:609–620.
  • Kopito, R. R. 1997. ER quality control: the cytoplasmic connection. Cell 88:427–430.
  • Kubler, E., and J. Riezman 1993. Actin and fimbrin are required for the internalization step of endocytosis. EMBO J. 12:2855–2862.
  • Li, L., and J. Cohen 1996. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85:319–329.
  • Luo, W., and J. Chang 1997. Novel genes involved in endosomal traffic in yeast revealed by suppression of a targeting-defective plasma membrane ATPase mutant. J. Cell Biol. 138:731–746.
  • Lupas, A. 1996. Predictions and analysis of coiled-coil structures. Methods Enzymol. 266:513–525.
  • Marcusson, E. G., B. F. Horazdovsky, J. L. Cereghino, E. Gharakhanian, and J. Emr 1994. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 77:579–586.
  • Minami, Y., A. M. Weissman, L. E. Samelson, and J. Klausner 1987. Building a multichain receptor: synthesis, degradation, and assembly of the T-cell antigen receptor. Proc. Natl. Acad. Sci. USA 84:2688–2692.
  • Newlon, C. S., L. R. Lipchitz, I. Collins, A. Deshpande, R. J. Devenish, R. P. Green, H. L. Klein, T. G. Palzkill, R. B. Ren, S. Synn, and J. Woody 1991. Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and identification and localization of ARS elements. Genetics 129:343–357.
  • Oliver, S. G., Q. J. van der Aart, M. L. Agostoni-Carbone, M. Aigle, L. Alberghina, D. Alexandraki, G. Antoine, R. Anwar, J. P. Ballesta, P. Benit, G. Berben, E. Bergantino, N. Biteau, P. A. Bolle, M. Bolotinfukuhara, A. Brown, A. J. P. Brown, J. M. Buhler, C. Carcano, G. Carignani, H. Cederberg, R. Chanet, R. Contreras, M. Crouzet, B. Daignanfornier, E. Defoor, M. Delgado, J. Demolder, C. Doira, E. Dubois, B. Dujon, and J. Dusterhoft 1992. The complete DNA sequence of yeast chromosome III. Nature 357:38–46.
  • Ormö, M., A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and J. Remington 1996. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395.
  • Parlati, F., M. Dominguez, J. J. M. Bergeron, and J. Thomas 1995. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J. Biol. Chem. 270:244–253.
  • Piper, R. C., A. A. Cooper, H. Yang, and J. Stevens 1995. VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J. Cell Biol. 131:603–617.
  • Raymond, C. K., I. Howaldstevenson, C. A. Vater, and J. Stevens 1992. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class-E vps mutants. Mol. Biol. Cell 3:1389–1402.
  • Raymond, C. K., P. J. O’Hara, G. Eichinger, J. H. Rothman, and J. Stevens 1990. Molecular analysis of the yeast VPS3 gene and the role of its product in vacuolar protein sorting and vacuolar segregation during the cell cycle. J. Cell Biol. 111:877–892.
  • Rieder, S. E., L. M. Banta, K. Kohrer, J. M. McCaffery, and J. Emr 1996. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol. Biol. Cell 7:985–999.
  • Rieder, S. E., and J. Emr 1997. A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol. Biol. Cell 8:2307–2327.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and J. Fink 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Roth, A. F., and J. Davis 1996. Ubiquitination of the yeast a-factor receptor. J. Cell Biol. 134:661–674.
  • Rybak, S. L., F. Lanni, and J. Murphy 1997. Theoretical considerations on the role of membrane potential in the regulation of endosomal pH. Biophys. J. 73:674–687.
  • Schandel, K. A., and J. Jenness 1994. Direct evidence for ligand-induced internalization of the yeast α-factor pheromone receptor. Mol. Cell. Biol. 14:7245–7255.
  • Singerkruger, B., H. Stenmark, A. Dusterhoft, P. Philippsen, J. S. Yoo, D. Gallwitz, and J. Zerial 1994. Role of three rab5-like Gtpases, Ypt51p, Ypt52p, and Ypt53p, in the endocytic and vacuolar protein sorting pathways of yeast. J. Cell Biol. 125:283–298.
  • Singerkruger, B., H. Stenmark, and J. Zerial 1995. Yeast Ypt51p and mammalian Rab5: counterparts with similar function in the early endocytic pathway. J. Cell Sci. 108:3509–3521.
  • Sprague, G. F. Jr., and J. Herskowitz 1981. Control of yeast cell type by the mating type locus. I. Identification and control of expression of the a-specific gene BAR1. J. Mol. Biol. 153:305–321.
  • Symington, L. S., A. Brown, S. G. Oliver, P. Greenwell, and J. Petes 1991. Genetic analysis of a meiotic recombination hotspot on chromosome III of Saccharomyces cerevisiae. Genetics 128:717–727.
  • Takeshige, K., M. Baba, S. Tsuboi, T. Noda, and J. Ohsumi 1992. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119:301–311.
  • Trowbridge, I. S., J. F. Collawn, and J. Hopkins 1993. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell Biol. 9:129–161.
  • Van Dyke, R. W. 1988. Proton pump-generated electrochemical gradients in rat liver multivesicular bodies. Quantitation and effects of chloride. J. Biol. Chem. 263:2603–2611.
  • Vida, T. A., and J. Emr 1995. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128:779–792.
  • Vida, T. A., G. Huyer, and J. Emr 1993. Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment. J. Cell Biol. 121:1245–1256.
  • Vieira, A. V., C. Lamaze, and J. Schmid 1996. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089.
  • Wilcox, C. A., K. Redding, R. Wright, and J. Fuller 1992. Mutation of a tyrosine localization signal in the cytosolic tail of yeast Kex2 protease disrupts Golgi retention and results in default transport to the vacuole. Mol. Biol. Cell 3:1353–1371.
  • Wurmser, A. E., and J. Emr 1998. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J. 17:4930–4942.
  • Xie, W., L. Li, and J. Cohen 1998. Cell cycle-dependent subcellular localization of the TSG101 protein and mitotic and nuclear abnormalities associated with TSG101 deficiency. Proc. Natl. Acad. Sci. USA 95:1595–1600.
  • Zhong, Q., C. F. Chen, Y. Chen, P. L. Chen, and J. Lee 1997. Identification of cellular TSG101 protein in multiple human breast cancer cell lines. Cancer Res. 57:4225–4228.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.