29
Views
98
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Functional and Physical Interactions between AML1 Proteins and an ETS Protein, MEF: Implications for the Pathogenesis of t(8;21)-Positive Leukemias

, , , &
Pages 3635-3644 | Received 23 Jun 1998, Accepted 19 Feb 1999, Published online: 28 Mar 2023

REFERENCES

  • Aronson, B. D., A. L. Fisher, K. Blechman, M. Caudy, and J. Gergen 1997. Groucho-dependent and -independent repression activities of Runt domain proteins. Mol. Cell. Biol. 17:5581–5587.
  • Bassuk, A. G., and J. Leiden 1995. A direct physical association between ETS and AP-1 transcription factors in normal human T cells. Immunity 3:223–237.
  • Bories, J., D. M. Willerford, D. Grévin, L. Davidson, A. Camus, P. Martin, D. Stéhelin, and J. Alt 1995. Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene. Nature 377:635–638.
  • Britos-Bray, M., and J. Friedman 1997. Core binding factor cannot synergistically activate the myeloperoxidase proximal enhancer in immature myeloid cells without c-Myb. Mol. Cell. Biol. 17:5127–5135.
  • Bruhn, L., A. Munnerlyn, and J. Grosschedl 1997. ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev. 11:640–653.
  • Castilla, L. H., C. Wijmenga, Q. Wang, T. Stacy, N. A. Speck, M. Eckhaus, M. Marin-Padilla, F. S. Collins, A. Wynshaw-Boris, and J. Liu 1996. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene, CBFβ-MYH11. Cell 87:687–696.
  • Crepieux, P., J. Coll, and J. Stehelin 1994. The Ets family of proteins: weak modulators of gene expression in quest for transcriptional partners. Crit. Rev. Oncog. 5:615–638.
  • Crute, B. E., A. F. Lewis, Z. Wu, J. H. Bushweller, and J. Speck 1996. Biochemical and biophysical properties of the core-binding factor alpha2 (AML1) DNA-binding domain. J. Biol. Chem. 271:26251–26260.
  • Daga, A., J. E. Tighe, and J. Calabi 1992. Leukaemia/Drosophila homology. Nature 356:484.
  • Delattre, O., J. Zucman, B. Plougastel, C. Desmaze, T. Melot, M. Peter, H. Kovar, I. Joubert, P. de Jong, G. Rouleau, A. Aurias, and J. Thomas 1992. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359:162–165.
  • Frank, R. C., X. Sun, F. J. Berguido, A. Jakubowiak, and J. Nimer 1999. The t(8;21) fusion protein, AML1/ETO, transforms NIH3T3 cells and activates AP-1. Oncogene 18:1701–1710.
  • Frank, R., J. Zhang, H. Uchida, S. Meyers, S. W. Hiebert, and J. Nimer 1995. The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 11:2667–2674.
  • Giese, K., C. Kingsley, J. R. Kirshner, and J. Grosschedl 1995. Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev. 9:995–1008.
  • Golub, T., G. F. Barker, S. Bohlander, S. W. Hiebert, D. C. Ward, P. Bray-Ward, E. Morgan, S. C. Raimondi, J. D. Rowley, and J. Gilliland 1995. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 92:4917–4921.
  • Golub, T. R., G. F. Barker, M. Lovett, and J. Gilliland 1994. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77:307–316.
  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389:349–352.
  • Hernandez-Munain, C., and J. Krangel 1995. c-Myb and core-binding factor/PEBP2 display functional synergy but bind independently to adjacent sites in the T-cell receptor δ enhancer. Mol. Cell. Biol. 15:3090–3099.
  • Jeon, I.S., J. N. Davis, B. S. Braun, J. E. Sublett, M. F. Roussel, C. T. Denny, and J. Shapiro 1995. A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 10:1229–1234.
  • Kitabayashi, I., A. Yokoyama, K. Shimizu, and J. Ohki 1998. Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. EMBO 17:2994–3004.
  • Klampfer, L., J. Zhang, A. O. Zelenetz, H. Uchida, and J. Nimer 1996. The AML1/ETO fusion protein activates transcription of BCL-2. Proc. Natl. Acad. Sci. USA 93:14059–14064.
  • Lenny, N., S. Meyers, and J. Hiebert 1995. Functional domains of the t(8;21) fusion protein, AML-1/ETO. Oncogene 11:1761–1769.
  • Liu, P., S. A. Tarle, A. Hajra, D. F. Claxton, P. Marlton, M. Freedman, M. J. Siciliano, and J. Collins 1993. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 261:1041–4.
  • Mao, S., G. A. Neale, and J. Gorrha 1997. T-cell proto-oncogene rhombotin-2 is a complex transcription regulator containing multiple activation and repression domains. J. Biol. Chem. 272:5594–5599.
  • Meyers, S., J. R. Downing, and J. Hiebert 1993. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol. Cell. Biol. 13:6336–6345.
  • Meyers, S., and J. Hiebert 1995. Indirect and direct disruption of transcriptional regulation in cancer: E2F and AML-1. Crit. Rev. Eukaryot. Gene Expr. 5:365–383.
  • Meyers, S., N. Lenny, and J. Hiebert 1995. The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol. Cell. Biol. 15:1974–1982.
  • Mitani, K., S. Ogawa, T. Tanaka, H. Miyoshi, M. Kurokawa, H. Mano, Y. Yazaki, M. Ohki, and J. Hirai 1994. Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J. 13:504–510.
  • Miyazaki, Y., S. Mao, H. Erdjument-Bromage, P. Tempst, H. Kiyokawa, and S. Nimer. Submitted for publication.
  • Miyazaki, Y., X. Sun, H. Uchida, J. Zhang, and J. Nimer 1996. MEF, a novel transcription factor with an Elf-1 like DNA binding domain but distinct transcriptional activating properties. Oncogene 13:1721–1729.
  • Miyoshi, H., T. Kozu, K. Shimizu, K. Enomoto, N. Maseki, Y. Kaneko, N. Kamada, and J. Ohki 1993. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. 12:2715–2721.
  • Muthusamy, N., K. Barton, and J. Leiden 1995. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 377:639–642.
  • Niki, M., H. Okada, H. Takano, J. Kuno, K. Tani, H. Hibino, S. Asano, Y. Ito, M. Satake, and J. Noda 1997. Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor polyomavirus enhancer binding protein 2/core binding factor. Proc. Natl. Acad. Sci. USA 94:5697–5702.
  • Nimer, S. D., T. Deblasio, and L. Zon. Unpublished data.
  • Nuchprayoon, I., S. Meyers, L. M. Scott, J. Suzow, S. Hiebert, and J. Friedman 1994. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2β/CBFβ proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol. Cell. Biol. 14:5558–5568.
  • Nucifora, G., and J. Rowley 1995. AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood 86:1–14.
  • Okuda, T., J. van Deursen, S. W. Hiebert, G. Grosveld, and J. Downing 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330.
  • Papadopoulos, P., S. A. Ridge, C. A. Boucher, C. Stocking, and J. Wiedemann 1995. The novel activation of ABL by fusion to an ets-related gene, TEL. Cancer Res. 55:34–38.
  • Pepling, M. E., and J. Gergen 1995. Conservation and function of the transcriptional regulatory protein Runt. Proc. Natl. Acad. Sci. USA 92:9087–9091.
  • Rhoades, K. L., C. J. Hetherington, J. D. Rowley, S. W. Hiebert, G. Nucifora, D. G. Tenen, and J. Zhang 1996. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc. Natl. Acad. Sci. USA 93:11895–11900.
  • Romana, S. P., M. Mauchauffe, M. Le Coniat, I. Chumakow, D. Le Paslier, R. Berger, and J. Bernard 1995. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85:3662–3670.
  • Sasaki, K., R. Yagi, T. Bronson, K. Tominaga, T. Matsunashi, K. Deguchi, Y. Tani, T. Kishimoto, and J. Komori 1996. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor b. Proc. Natl. Acad. Sci. USA 93:12359–12363.
  • Sorensen, P. H., S. L. Lessnick, D. Lopez-Terrada, X. F. Liu, T. J. Triche, and J. Denny 1994. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat. Genet. 6:146–151.
  • Speck, N. A., and J. Stacy 1995. A new transcription factor family associated with human leukemias. Crit. Rev. Eukaryot. Gene Expr. 5:337–364.
  • Sun, W., B. J. Graves, and J. Speck 1995. Transactivation of the moloney murine leukemia virus and T-cell receptor β-chain enhancers by cbf and ets requires intact binding sites for both proteins. J. Virol. 69:4941–4949.
  • Tenen, D. G., R. Hromas, J. D. Licht, and J. Zhang 1997. Transcription factors, normal myeloid development, and leukemia. Blood 90:489–519.
  • Uchida, H., J. Zhang, and J. Nimer 1997. AML1A and AML1B can transactivate the human IL-3 promoter. J. Immunol. 158:2251–2258.
  • Wang, J., T. Hoshino, R. L. Redner, S. Kajigaya, and J. Liu 1998. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc. Natl. Acad. Sci. USA 95:10860–10865.
  • Wang, Q., T. Stacy, M. Binder, M. Marin-Padilla, A. H. Sharpe, and J. Speck 1996. Disruption of the cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 93:3444–3449.
  • Wang, Q., T. Stacy, J. D. Miller, A. F. Lewis, T. L. Gu, X. Huang, J. H. Bushweller, J. C. Bories, F. W. Alt, G. Ryan, P. P. Liu, A. Wynshaw-Boris, M. Binder, M. Marin-Padilla, A. H. Sharpe, and J. Speck 1996. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87:697–708.
  • Wasylyk, B., S. L. Hahn, and J. Giovane 1993. The Ets family of transcription factors. Eur. J. Biochem. 211:7–18.
  • Westendorf, J. J., C. M. Yamamoto, N. Lenny, J. R. Downing, M. E. Selsted, and J. Hiebert 1998. The t(8;21) fusion product, AML-1–ETO, associates with C/EBP-alpha, inhibits C/EBP-α-dependent transcription, and blocks granulocytic differentiation. Mol. Cell. Biol. 18:322–333.
  • Yergeau, D. A., C. J. Hetherington, Q. Wang, P. Zhang, A. H. Sharpe, M. Binder, M. Marin-Padilla, D. G. Tenen, N. A. Speck, and J. Zhang 1997. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat. Genet. 15:303–306.
  • Zhang, D. E., C. J. Hetherington, S. Meyers, K. L. Rhoades, C. J. Larson, H.-M. Chen, S. W. Hiebert, and J. Tenen 1996. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBFα2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol. Cell. Biol. 16:1231–1240.
  • Xhang, Y.-W., S.-C. Bae, G. Huang, Y.-X. Fu, J. Lu, M.-Y. Ahn, Y. Kanno, T. Kanno, and J. Ito 1997. A novel transcript encoding an N-terminally truncated AML1/PEBP2αB protein interferes with transactivation and blocks granulocytic differentiation of 32Dcl3 myeloid cells. Mol. Cell. Biol. 17:4133–4145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.