5
Views
75
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

RAG-2 Promotes Heptamer Occupancy by RAG-1 in the Assembly of a V(D)J Initiation Complex

&
Pages 3674-3683 | Received 28 Dec 1998, Accepted 12 Feb 1999, Published online: 28 Mar 2023

REFERENCES

  • Agrawal, A., Q. M. Eastman, and J. Schatz 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–751.
  • Agrawal, A., and J. Schatz 1997. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89:43–53.
  • Akamatsu, Y., and J. Oettinger 1998. Distinct roles of RAG1 and RAG2 in binding the V(D)J recombination signal sequence. Mol. Cell. Biol. 18:4670–4678.
  • Difilippantonio, M. J., C. J. McMahan, Q. M. Eastman, E. Spanopoulou, and J. Schatz 1996. RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination. Cell 87:253–262.
  • Eastman, Q. M., T. M. J. Leu, and J. Schatz 1996. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380:85–88.
  • Heichman, K. A., and J. Johnson 1990. The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. Science 249:511–517.
  • Hiom, K., and J. Gellert 1998. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1:1011–1019.
  • Hiom, K., and J. Gellert 1997. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell 88:65–72.
  • Hiom, K., M. Melek, and J. Gellert 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94:463–470.
  • Kennedy, A. K., A. Guhathakurta, N. Kleckner, and J. Haniford 1998. Tn10 transposition via a DNA hairpin intermediate. Cell 95:125–134.
  • Lavoie, B. D., B. S. Chan, R. G. Allison, and J. Chaconas 1991. Structural aspects of a higher order nucleoprotein complex: induction of an altered DNA structure at the Mu-host junction of the Mu Type 1 transpososome. EMBO J. 10:3051–3059.
  • Leu, T. M. J., and J. Schatz 1995. rag-1 and rag-2 are components of a high-molecular-weight complex, and association of rag-2 with this complex is rag-1 dependent. Mol. Cell. Biol. 15:5657–5670.
  • Li, W., P. Swanson, and J. Desiderio 1997. RAG-1- and RAG-2-dependent assembly of functional complexes with V(D)J recombination substrates in solution. Mol. Cell. Biol. 17:6932–6939.
  • McBlane, J. F., D. C. van Gent, D. A. Ramsden, C. Romeo, C. A. Cuomo, M. Gellert, and J. Oettinger 1995. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83:387–395.
  • McMahan, C. J., M. J. Sadofsky, and J. Schatz 1997. Definition of a large region of RAG1 that is important for coimmunoprecipitation of RAG2. J. Immunol. 158:2202–2210.
  • Melek, M., M. Gellert, and J. van Gent 1998. Rejoining of DNA by the RAG1 and RAG2 proteins. Science 280:301–303.
  • Merickel, S. K., M. J. Haykinson, and J. Johnson 1998. Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev. 12:2803–2816.
  • Mizuuchi, M., T. A. Baker, and J. Mizuuchi 1992. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition. Cell 70:303–311.
  • Nagawa, F., K.-I. Ishiguro, A. Tsuboi, T. Yoshida, A. Ishikawa, T. Takemori, A. J. Otsuka, and J. Sakano 1998. Footprint analysis of the RAG protein recombination signal sequence complex for V(D)J type recombination. Mol. Cell. Biol. 18:655–663.
  • New England Biolabs. Unpublished data.
  • Oettinger, M. A., D. G. Schatz, C. Gorka, and J. Baltimore 1990. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523.
  • Roman, C., and J. Baltimore 1996. Genetic evidence that the RAG1 protein directly participates in V(D)J recombination through substrate recognition. Proc. Natl. Acad. Sci. USA 93:2333–2338.
  • Roth, D., C. Zhu, and J. Gellert 1993. Characterization of broken DNA molecules associated with V(D)J recombination. Proc. Natl. Acad. Sci. USA 90:10788–10792.
  • Roth, D. B., and J. Craig 1998. VDJ recombination: a transposase goes to work. Cell 94:411–414.
  • Roth, D. B., J. P. Menetski, P. B. Nakajima, M. J. Bosma, and J. Gellert 1992. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70:983–991.
  • Sadofsky, M. J., J. E. Hesse, D. C. van Gent, and J. Gellert 1995. RAG-1 mutations that affect the target specificity of V(D)J recombination: a possible direct role of RAG-1 in site recognition. Genes Dev. 9:2193–2199.
  • Santagata, S., V. Aidinis, and J. Spanopoulou 1998. The effect of Me2+ cofactors at the initial stages of V(D)J recombination. J. Biol. Chem. 273:16325–16331.
  • Sarnovsky, R. J., E. W. May, and J. Craig 1996. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. EMBO J. 15:6348–6361.
  • Savilahti, H., P. A. Rice, and J. Mizuuchi 1995. The phage Mu transpososome core: DNA requirements for assembly and function. EMBO J. 14:4893–4903.
  • Schatz, D. G., M. A. Oettinger, and J. Baltimore 1989. The V(D)J recombination activating gene, RAG-1. Cell 59:1035–1048.
  • Schlissel, M., A. Constantinescu, T. Morrow, M. Baxter, and J. Peng 1993. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev. 7:2520–2532.
  • Sheehan, K. M., and J. Lieber 1993. V(D)J recombination: signal and coding joint resolution are upcoupled and depend on parallel synapsis of the sites. Mol. Cell. Biol. 13:1363–1370.
  • Spanopoulou, E., P. Cortes, C. Shih, C.-M. Huang, D. P. Silver, P. Svec, and J. Baltimore 1995. Localization, interaction, and RNA binding properties of the V(D)J recombination-activating proteins RAG1 and RAG2. Immunity 3:715–726.
  • Spanopoulou, E., F. Zaitseva, F.-H. Wang, S. Santagata, D. Baltimore, and J. Panayotou 1996. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell 87:263–276.
  • Steen, S. B., L. Gomelsky, and J. Roth 1996. The 12/23 rule is enforced at the cleavage step of V(D)J recombination in vivo. Genes Cells 1:543–553.
  • Swanson, P. C., and J. Desiderio 1998. V(D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2. Immunity 9:115–125.
  • van Gent, D. C., K. Hiom, T. T. Paull, and J. Gellert 1997. Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J. 16:2665–2670.
  • van Gent, D. C., J. F. McBlane, D. A. Ramsden, M. J. Sadofsky, J. E. Hesse, and J. Gellert 1995. Initiation of V(D)J recombination in a cell-free system. Cell 81:925–934.
  • van Gent, D. C., K. Mizuuchi, and J. Gellert 1996. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271:1592–1594.
  • van Gent, D. C., D. A. Ramsden, and J. Gellert 1996. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 85:107–113.
  • Werner, M. H., J. R. Hugh, A. M. Gronenborn, and J. Clore 1995. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 81:705–714.
  • Yang, S.-W., and J. Nash 1994. Specific photocrosslinking of DNA-protein complexes: identification of contacts between integration host factor and its target DNA. Proc. Natl. Acad. Sci. USA 91:12183–12187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.