33
Views
156
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Transcription Factor E2F-1 Is Upregulated in Response to DNA Damage in a Manner Analogous to That of p53

, &
Pages 3704-3713 | Received 12 Oct 1998, Accepted 27 Jan 1999, Published online: 28 Mar 2023

REFERENCES

  • Barak, Y., T. Juven, R. Haffner, and J. Oren 1993. Mdm2 expression is induced by wild type-p53 activity. EMBO J. 12:461–468.
  • Bartek, J., J. Bartkova, and J. Lukas 1996. The retinoblastoma protein pathway and the restriction point. Curr. Opin. Cell Biol. 8:805–814.
  • Bartek, J., B. Vojtesek, R. J. A. Grand, P. H. Gallimore, and J. Lane 1992. Cellular-localization and T-antigen binding of the retinoblastoma protein. Oncogene 7:101–108.
  • Blattner, C., E. Tobiasch, M. Litfin, H. J. Rahmsdorf, and J. Herrlich 1999. DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation. Oncogene 18:1723–1733.
  • Blattner, C. Unpublished data.
  • Blaydes, J. P., V. Gire, J. M. Rowson, and J. Wynford-Thomas 1997. Tolerance of high levels of wild-type p53 in transformed epithelial cells dependent on auto-regulation by mdm-2. Oncogene 14:1859–1868.
  • Bottger, A., V. Bottger, A. Sparks, W. L. Liu, S. F. Howard, and J. Lane 1997. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol. 7:860–869.
  • Bottger, A. Personal communication.
  • Boukamp, P., R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and J. Fusenig 1988. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell-line. J. Cell Biol. 106:761–771.
  • Campanero, M. R., and J. Flemington 1997. Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRb tumor suppressor protein. Proc. Natl. Acad. Sci. USA 94:2221–2226.
  • Chen, J. D., V. Marechal, and J. Levine 1993. Mapping of the p53 and Mdm-2 interaction domains. Mol. Cell. Biol. 13:4107–4114.
  • Chen, L. H., S. Agrawal, W. Q. Zhou, R. W. Zhang, and J. Chen 1998. Synergistic activation of p53 by inhibition of Mdm2 expression and DNA damage. Proc. Natl. Acad. Sci. USA 95:195–200.
  • Degregori, J., T. Kowalik, and J. Nevins 1995. Cellular targets for activation by the E2F-1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol. Cell. Biol. 15:4215–4224.
  • Eldeiry, W. S., J. W. Harper, P. M. Oconnor, V. E. Velculescu, C. E. Canman, J. Jackman, J. A. Pietenpol, M. Burrell, D. E. Hill, Y. S. Wang, K. G. Wiman, W. E. Mercer, M. B. Kastan, K. W. Kohn, S. J. Elledge, K. W. Kinzler, and J. Vogelstein 1994. Waf1/Cip1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54:1169–1174.
  • Field, S. J., F. Y. Tsai, F. Kuo, A. M. Zubiaga, W. G. Kaelin, D. M. Livingston, S. H. Orkin, and J. Greenberg 1996. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85:549–561.
  • Flemington, E. K., S. H. Speck, and J. Kaelin 1993. E2F-1-mediated transactivation is inhibited by complex-formation with the retinoblastoma susceptibility gene-product. Proc. Natl. Acad. Sci. USA 90:6914–6918.
  • Florenes, V. A., G. M. Maelandsmo, A. Forus, A. Andreassen, O. Myklebost, and J. Fodstad 1994. Mdm2 gene amplification and transcript levels in human sarcomas—relationship to the p53 gene status. J. Natl. Cancer Inst. 86:1297–1302.
  • Fort, P., L. Marty, M. Piechaczyk, S. Elsabrouty, C. Dani, P. Jeanteur, and J. Blanchard 1985. Various rat adult tissues express only one major messenger-RNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 13:1431–1442.
  • Freedman, D. A., and J. Levine 1998. Nuclear export is required for degradation of endogenous p53 by Mdm2 and human papillomavirus E6. Mol. Cell. Biol. 18:7288–7293.
  • Grossman, S. R., M. Perez, A. L. Kung, M. Joseph, C. Mansur, Z. X. Xiao, S. Kumar, P. M. Howley, and J. Livingston 1998. p300/Mdm2 complexes participate in Mdm2-mediated p53 degradation. Mol. Cell 2:405–415.
  • Gu, W., and J. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.
  • Hagemeier, C., A. Cook, and J. Kouzarides 1993. The retinoblastoma protein binds E2F residues required for activation in-vivo and TBP binding in-vitro. Nucleic Acids Res. 21:4998–5004.
  • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and J. Elledge 1993. The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816.
  • Hateboer, G., R. M. Kerkhoven, A. Shvarts, R. Bernards, and J. Beijersbergen 1996. Degradation of E2F by the ubiquitin-proteasome pathway: regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev. 10:2960–2970.
  • Haupt, Y., R. Maya, A. Kazaz, and J. Oren 1997. Mdm2 promotes the rapid degradation of p53. Nature 387:296–299.
  • Helin, K. 1998. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8:28–35.
  • Helin, K., E. Harlow, and J. Fattaey 1993. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol. Cell. Biol. 13:6501–6508.
  • Hengstermann, A., N. J. Whitaker, D. Zimmer, H. Zentgraf, and J. Scheffner 1998. Characterization of sequence elements involved in p53 stability regulation reveals cell type dependence for p53 degradation. Oncogene 17:2933–2941.
  • Hofmann, F., F. Martelli, D. M. Livingston, and J. Wang 1996. The retinoblastoma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway. Genes Dev. 10:2949–2959.
  • Holmberg, C., K. Helin, M. Sehested, and J. Karlstrom 1998. E2F-1-induced p53-independent apoptosis in transgenic mice. Oncogene 17:143–155.
  • Honda, R., H. Tanaka, and J. Yasuda 1997. Oncoprotein Mdm2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420:25–27.
  • Huang, Y. Y., T. Ishiko, S. Nakada, T. Utsugisawa, T. Kato, and J. Yuan 1997. Role for E2F is DNA damage-induced entry of cells into S phase. Cancer Res. 57:3640–3643.
  • Hunt, K. K., J. Deng, T. J. Liu, M. WilsonHeiner, S. G. Swisher, G. Clayman, and J. Hung 1997. Adenovirus-mediated overexpression of the transcription factor E2F-1 induces apoptosis in human breast and ovarian carcinoma cell lines and does not require p53. Cancer Res. 57:4722–4726.
  • Johnson, D. G., J. K. Schwarz, W. D. Cress, and J. Nevins 1993. Expression of transcription factor E2F-1 induces quiescent cells to enter S-phase. Nature 365:349–352.
  • Kastan, M. B., Q. M. Zhan, W. S. Eldeiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and J. Fornace 1992. A mammalian-cell cycle checkpoint pathway utilizing p53 and Gadd45 is defective in ataxia-telangiectasia. Cell 71:587–597.
  • Kowalik, T. F., J. DeGregori, G. Leone, L. Jakoi, and J. Nevins 1998. E2F-1-specific induction of apoptosis and p53 accumulation, which is blocked by Mdm2. Cell Growth Differ. 9:113–118.
  • Kowalik, T. F., J. Degregori, J. K. Schwarz, and J. Nevins 1995. E2F-1 overexpression in quiescent fibroblasts leads to induction of cellular DNA-synthesis and apoptosis. J. Virol. 69:2491–2500.
  • Kubbutat, M. H. G., S. N. Jones, and J. Vousden 1997. Regulation of p53 stability by Mdm2. Nature 387:299–303.
  • Kuerbitz, S. J., B. S. Plunkett, W. V. Walsh, and J. Kastan 1992. Wild-type p53 is a cell-cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA 89:7491–7495.
  • Lu, X., and J. Lane 1993. Differential induction of transcriptionally active p53 following UV or ionizing-radiation—defects in chromosome instability syndromes. Cell 75:765–778.
  • Maki, C. G., J. M. Huibregtse, and J. Howley 1996. In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res. 56:2649–2654.
  • Maltzman, W., and J. Czyzyk 1984. UV irradiation stimulates levels of p53 cellular tumor-antigen in nontransformed mouse cells. Mol. Cell. Biol. 4:1689–1694.
  • Martin, K., D. Trouche, C. Hagemeier, T. S. Sorensen, N. B. LaThangue, and J. Kouzarides 1995. Stimulation of E2F-11/DP-1 transcriptional activity by Mdm2 oncoprotein. Nature 375:691–694.
  • Midgley, C. A., C. J. Fisher, J. Bartek, B. Vojtesek, D. Lane, and J. Barnes 1992. Analysis of p53 expression in human tumors—an antibody raised against human p53 expressed in Escherichia coli. J. Cell Sci. 101:183–189.
  • Midgley, C. A., and J. Lane 1997. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15:1179–1189.
  • Miyashita, T., and J. Reed 1995. Tumor-suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299.
  • Nigro, J. M., S. J. Baker, A. C. Preisinger, J. M. Jessup, R. Hostetter, K. Cleary, S. H. Bigner, N. Davidson, S. Baylin, P. Devilee, T. Glover, F. S. Collins, A. Weston, R. Modali, C. C. Harris, and J. Vogelstein 1989. Mutations in the p53 gene occur in diverse human tumor types. Nature 342:705–708.
  • Nip, J., D. K. Strom, G. Zambetti, J. L. Cleveland, and J. Hiebert 1997. E2F-1-mediated induction of p53 in myeloid progenitor cells suppresses topoisomerase II alpha. Blood 90:205.
  • Okamoto, K., and J. Beach 1994. Cyclin-G is a transcriptional target of the p53 tumor-suppressor protein. EMBO J. 13:4816–4822.
  • Ronca, F., S. L. Chan, and J. Yu 1997. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine induces apoptosis in human neuroblastoma cells, SH-SY5Y, through a p53-dependent pathway. J. Biol. Chem. 272:4252–4260.
  • Roth, J., M. Dobbelstein, D. Freedmann, T. Shenk, and J. Levine 1998. Nucleo-cytoplasmic shuttling of the Hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus Rev protein. EMBO J. 17:554–556.
  • Scheffner, M., J. M. Huibregtse, R. D. Vierstra, and J. Howley 1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505.
  • Shan, B., and J. Lee 1994. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol. 14:8166–8173.
  • Sherr, C. J. 1996. Cancer cell cycles. Science 274:1672–1677.
  • Waseem, N. H., and J. Lane 1990. Monoclonal-antibody analysis of the proliferating cell nuclear antigen (PCNA)—structural conservation and the detection of a nucleolar form. J. Cell Sci. 96:121–129.
  • Weinberg, R. A. 1995. The retinoblastoma protein and cell-cycle control. Cell 81:323–330.
  • Wu, L., and J. Levine 1997. Differential regulation of the p21/WAF-1 and mdm2 genes after high-dose UV irradiation: p53-dependent and p53-independent regulation of the mdm2 gene. Mol. Med. 3:441–451.
  • Wu, X. W., J. H. Bayle, D. Olson, and J. Levine 1993. The p53 Mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132.
  • Yamasaki, L., R. Bronson, B. O. Williams, N. J. Dyson, E. Harlow, and J. Jacks 1998. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−) mice. Nat. Genet. 18:360–364.
  • Yamasaki, L., T. Jacks, R. Bronson, E. Goillot, E. Harlow, and J. Dyson 1996. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85:537–548.
  • Yankulov, K., K. Yamashita, R. Roy, J. M. Egly, and J. Bentley 1995. The transcriptional elongation inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole inhibits transcription factor IIH-associated protein-kinase. J. Biol. Chem. 270:23922–23925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.