78
Views
118
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Effects of Mutations in DNA Repair Genes on Formation of Ribosomal DNA Circles and Life Span in Saccharomyces cerevisiae

, &
Pages 3848-3856 | Received 16 Dec 1998, Accepted 24 Feb 1999, Published online: 28 Mar 2023

REFERENCES

  • Aboussekhra, A., and J. Wood 1994. Repair of UV-damaged DNA by mammalian cells and Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 4:212–220.
  • Aguilera, A. 1995. Genetic evidence for different RAD52-dependent intrachromosomal recombination pathways in Saccharomyces cerevisiae. Curr. Genet. 27:298–305.
  • Alani, E., L. Cao, and J. Kleckner 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545.
  • Allen, J. B., Z. Zhou, W. Siede, E. C. Friedberg, and J. Elledge 1994. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8:2401–2415.
  • Ansari, A., and J. Gartenberg 1997. The yeast silent information regulator Sir4p anchors and partitions plasmids. Mol. Cell. Biol. 17:7061–7068.
  • Bai, Y., and J. Symington 1996. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 16:4832–4841.
  • Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and J. Cullin 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21:3329–3330.
  • Baumann, P., and J. West 1998. Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem. Sci. 23:247–251.
  • Becker, D. M., J. D. Fikes, and J. Guarente 1991. A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc. Natl. Acad. Sci. USA 88:1968–1972.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and J. Fink 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–175.
  • Boulton, S. J., and J. Jackson 1998. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17:1819–1828.
  • Brewer, B. J., and J. Fangman 1988. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–643.
  • Brewer, B. J., D. Lockshon, and J. Fangman 1992. The arrest of replication forks in the rDNA of yeast occurs independently of transcription. Cell 71:267–276.
  • Bryk, M., M. Banerjee, M. Murphy, K. E. Knudsen, D. J. Garfinkel, and J. Curcio 1997. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11:255–269.
  • Carter, E. A., F. E. Paul, P. A. Hunter 1993. Cytometric evaluation of antifungal agents, p. 111–120. In D. Lloyd (ed.), Flow cytometry in microbiology. Springer-Verlag, London, United Kingdom.
  • Christman, M. F., F. S. Dietrich, and J. Fink 1988. Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55:413–425.
  • Christman, M. F., F. S. Dietrich, N. A. Levin, B. U. Sadoff, and J. Fink 1993. The rRNA-encoding DNA array has an altered structure in topoisomerase I mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90:7637–7641.
  • Deere, D., J. Shen, G. Vesey, P. Bell, P. Bissinger, and J. Veal 1998. Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14:147–160.
  • Defossez, P.-A., P. U. Park, and J. Guarente 1998. Vicious circles: a mechanism of yeast aging. Curr. Opin. Microbiol. 1:707–711.
  • Defossez, P.-A., R. Prusty, S. Lin, M. Kaeberlein, R. Keil, and L. Guarente. Mol. Cell, in press.
  • Egilmez, N. K., and J. Jazwinski 1989. Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J. Bacteriol. 171:37–42.
  • Ellis, N. A., J. Groden, T. Z. Ye, J. Straughen, D. J. Lennon, S. Ciocci, M. Proytcheva, and J. German 1995. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83:655–666.
  • Epstein, C. J., G. M. Martin, A. L. Schultz, and J. Motulsky 1966. Werner’s syndrome: a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 45:177–221.
  • Finch, C. 1990. Longevity, senescence, and the genome. The University of Chicago Press, Chicago, Ill.
  • Fishman-Lobell, J., and J. Haber 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258:480–484.
  • Fritze, C. E., K. Verschueren, R. Strich, and J. Esposito 1997. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J. 16:6495–6509.
  • Fukuchi, K., G. M. Martin, R. J. Monnat Jr.. 1989. Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc. Natl. Acad. Sci. USA 86:5893–5897.
  • Fukuchi, K., K. Tanaka, Y. Kumahara, K. Marumo, M. B. Pride, G. M. Martin, R. J. Monnat Jr.. 1990. Increased frequency of 6-thioguanine-resistant peripheral blood lymphocytes in Werner syndrome patients. Hum. Genet. 84:249–252.
  • Game, J. C. 1993. DNA double-strand breaks and the RAD50-RAD57 genes in Saccharomyces. Semin. Cancer Biol. 4:73–83.
  • Gangloff, S., J. P. McDonald, C. Bendixen, L. Arthur, and J. Rothstein 1994. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14:8391–8398.
  • Gotta, M., S. Strahl-Bolsinger, H. Renauld, T. Laroche, B. K. Kennedy, M. Grunstein, and J. Gasser 1997. Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J. 16:3243–3255.
  • Gottlieb, S., and J. Esposito 1989. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–776.
  • Gray, M. D., J. C. Shen, A. S. Kamath-Loeb, A. Blank, B. L. Sopher, G. M. Martin, J. Oshima, and J. Loeb 1997. The Werner syndrome protein is a DNA helicase. Nat. Genet. 17:100–103.
  • Gray, M. D., L. Wang, H. Youssoufian, G. M. Martin, and J. Oshima 1998. Werner helicase is localized to transcriptionally active nucleoli of cycling cells. Exp. Cell Res. 242:487–494.
  • Grunstein, M. 1997. Molecular model for telomeric heterochromatin in yeast. Curr. Opin. Cell Biol. 9:383–387.
  • Haber, J. E. 1995. In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17:609–620.
  • Huang, S., L. Baomin, M. D. Gray, J. Oshima, I. S. Mian, and J. Campisi 1998. The premature ageing syndrome protein, WRN, is a 3′→5′ exonuclease. Nat. Genet. 20:114–116.
  • Ichihara, Y., and J. Kurosawa 1993. Construction of new T vectors for direct cloning of PCR products. Gene 130:153–154.
  • Ivanov, E. L., and J. Haber 1995. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2245–2251.
  • Ivanov, E. L., N. Sugawara, J. Fishman-Lobell, and J. Haber 1996. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142:693–704.
  • Ivanov, E. L., N. Sugawara, C. I. White, F. Fabre, and J. Haber 1994. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3414–3425.
  • Johnson, R. D., and J. Symington 1995. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Mol. Cell. Biol. 15:4843–4850.
  • Kahana, J. A., P. A. Silver 1996. Use of the A. victoria green fluorescent protein to study protein dynamics in vivo, p. 9.7.22–9.7.28. In F. M. Ausubel, R. Brent, R. E. Kingston, D. E. Moore, J. G. Seidman, J. A. Smith, K. Struhl (ed.), Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
  • Kennedy, B. K., N. R. Austriaco Jr., and J. Guarente 1994. Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J. Cell Biol. 127:1985–1993.
  • Kennedy, B. K., N. R. Austriaco Jr., J. Zhang, and J. Guarente 1995. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80:485–496.
  • Kennedy, B. K., M. Gotta, D. A. Sinclair, K. Mills, D. S. McNabb, M. Murthy, S. M. Pak, T. Laroche, S. M. Gasser, and J. Guarente 1997. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89:381–391.
  • Kim, R. A., and J. Wang 1989. A subthreshold level of DNA topoisomerases leads to the excision of yeast rDNA as extrachromosomal rings. Cell 57:975–985.
  • Kobayashi, T., D. J. Heck, M. Nomura, and J. Horiuchi 1998. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev. 12:3821–3830.
  • Kobayashi, T., and J. Horiuchi 1996. A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells 1:465–474.
  • Kowalczykowski, S. C., D. A. Dixon, A. K. Eggleston, S. D. Lauder, and J. Rehrauer 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58:401–465.
  • Lee, S. E., J. K. Moore, A. Holmes, K. Umezu, R. D. Kolodner, and J. Haber 1998. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399–409.
  • Liang, F., M. Han, P. J. Romanienko, and J. Jasin 1998. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl. Acad. Sci. USA 95:5172–5177.
  • Lin, Y. H., and J. Keil 1991. Mutations affecting RNA polymerase I-stimulated exchange and rDNA recombination in yeast. Genetics 127:31–38.
  • Loo, S., and J. Rine 1995. Silencing and heritable domains of gene expression. Annu. Rev. Cell Dev. Biol. 11:519–548.
  • Mahoney, D. J., and J. Broach 1989. The HML mating-type cassette of Saccharomyces cerevisiae is regulated by two separate but functionally equivalent silencers. Mol. Cell. Biol. 9:4621–4630.
  • Malone, R. E., and J. Esposito 1981. Recombinationless meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1:891–901.
  • Malone, R. E., T. Ward, S. Lin, and J. Waring 1990. The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast. Curr. Genet. 18:111–116.
  • Marciniak, R. A., D. B. Lombard, F. B. Johnson, and J. Guarente 1998. Nucleolar localization of the Werner syndrome protein in human cells. Proc. Natl. Acad. Sci. USA 95:6887–6892.
  • Michel, B., S. D. Ehrlich, and J. Uzest 1997. DNA double-strand breaks caused by replication arrest. EMBO J. 16:430–438.
  • Miller, R. D., L. Prakash, and J. Prakash 1982. Defective excision of pyrimidine dimers and interstrand DNA crosslinks in rad7 and rad23 mutants of Saccharomyces cerevisiae. Mol. Gen. Genet. 188:235–239.
  • Mills, K., and L. Guarente. Unpublished reagent.
  • Mills, K., D. A. Sinclair, and L. Guarente. Unpublished data.
  • Moore, J. K., and J. Haber 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Genes Dev. 10:1310–1326.
  • Mortimer, R. K., R. Contopoulou, and J. Schild 1981. Mitotic chromosome loss in a radiation-sensitive strain of the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:5778–5782.
  • Mortimer, R. K., and J. Johnston 1959. Life span of individual yeast cells. Nature 183:1751–1752.
  • Müller, I. 1971. Experiments on ageing in single cells of Saccharomyces cerevisiae. Arch. Mikrobiol. 77:20–25.
  • Müller, I. 1985. Parental age and the life-span of zygotes of Saccharomyces cerevisiae. Antonie Leeuwenhoek 51:1–10.
  • Murray, A. W., and J. Szostak 1983. Pedigree analysis of plasmid segregation in yeast. Cell 34:961–970.
  • Nakayama, K., N. Irino, and J. Nakayama 1985. The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol. Gen. Genet. 200:266–271.
  • Nugent, C. I., G. Bosco, L. O. Ross, S. K. Evans, A. P. Salinger, J. K. Moore, J. E. Haber, and J. Lundblad 1998. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8:657–660.
  • Ozenberger, B. A., and J. Roeder 1991. A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol. Cell. Biol. 11:1222–1231.
  • Petes, T. D., R. E. Malone, L. S. Symington 1991. Recombination in yeast, p. 407–521. In J. Broach, J. Pringle, E. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces, vol. 1. Genome dynamics, protein synthesis and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Prakash, S., P. Sung, and J. Prakash 1993. DNA repair genes and proteins of Saccharomyces cerevisiae. Annu. Rev. Genet. 27:33–70.
  • Puranam, K. L., and J. Blackshear 1994. Cloning and characterization of RECQL, a potential human homologue of the Escherichia coli DNA helicase RecQ. J. Biol. Chem. 269:29838–29845.
  • Rattray, A. J., and J. Symington 1995. Multiple pathways for homologous recombination in Saccharomyces cerevisiae. Genetics 139:57–66.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Salk, D. 1982. Werner’s syndrome: a review of recent research with an analysis of connective tissue metabolism, growth control of cultured cells, and chromosomal aberrations. Hum. Genet. 62:1–5.
  • Sandell, L. L., and J. Zakian 1993. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75:729–739.
  • Sargent, R. G., M. A. Brenneman, and J. Wilson 1997. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17:267–277.
  • Schultz, M. C., S. J. Brill, Q. Ju, R. Sternglanz, and J. Reeder 1992. Topoisomerases and yeast rRNA transcription: negative supercoiling stimulates initiation and topoisomerase activity is required for elongation. Genes Dev. 6:1332–1341.
  • Seigneur, M., V. Bidnenko, S. D. Ehrlich, and J. Michel 1998. RuvAB acts at arrested replication forks. Cell 95:419–430.
  • Shen, J. C., M. D. Gray, J. Oshima, and J. Loeb 1998. Characterization of Werner syndrome protein DNA helicase activity: directionality, substrate dependence and stimulation by replication protein A. Nucleic Acids Res. 26:2879–2885.
  • Sherman, F., G. Fink, J. Hicks 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shinohara, A., and J. Ogawa 1995. Homologous recombination and the roles of double-strand breaks. Trends Biochem. Sci. 20:387–391.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Sinclair, D. A., and J. Guarente 1997. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042.
  • Sinclair, D. A., K. Mills, and J. Guarente 1997. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277:1313–1316.
  • Smeal, T., J. Claus, B. Kennedy, F. Cole, and J. Guarente 1996. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84:633–642.
  • Smith, J. S., and J. Boeke 1997. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 11:241–254.
  • Stewart, E., C. R. Chapman, F. Al-Khodairy, A. M. Carr, and J. Enoch 1997. rqh1+, a fission yeast gene related to the Bloom’s and Werner’s syndrome genes, is required for reversible S phase arrest. EMBO J. 16:2682–2692.
  • Sung, P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11:1111–1121.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and J. Stahl 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • Takata, M., M. S. Sasaki, E. Sonoda, C. Morrison, M. Hashimoto, H. Utsumi, Y. Yamaguchi-Iwai, A. Shinohara, and J. Takeda 1998. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17:5497–5508.
  • Tsukamoto, Y., J. Kato, and J. Ikeda 1997. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388:900–903.
  • van Gool, A. J., R. Verhage, S. M. Swagemakers, P. van de Putte, J. Brouwer, C. Troelstra, D. Bootsma, and J. Hoeijmakers 1994. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 13:5361–5369.
  • Watt, P. M., I. D. Hickson, R. H. Borts, and J. Louis 1996. SGS1, a homologue of the Bloom’s and Werner’s syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144:935–945.
  • Watt, P. M., E. J. Louis, R. H. Borts, and J. Hickson 1995. Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81:253–260.
  • Yamagata, K., J. Kato, A. Shimamoto, M. Goto, Y. Furuichi, and J. Ikeda 1998. Bloom’s and Werner’s syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Natl. Acad. Sci. USA 95:8733–8738.
  • Yan, H., C. Y. Chen, R. Kobayashi, and J. Newport 1998. Replication focus-forming activity 1 and the Werner syndrome gene product. Nat. Genet. 19:375–378.
  • Yu, C. E., J. Oshima, Y. H. Fu, E. M. Wijsman, F. Hisama, R. Alisch, S. Matthews, J. Nakura, T. Miki, S. Ouais, G. M. Martin, J. Mulligan, and J. Schellenberg 1996. Positional cloning of the Werner’s syndrome gene. Science 272:258–262.
  • Zou, H., and J. Rothstein 1997. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90:87–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.