52
Views
146
CrossRef citations to date
0
Altmetric
Gene Expression

Kin28, the TFIIH-Associated Carboxy-Terminal Domain Kinase, Facilitates the Recruitment of mRNA Processing Machinery to RNA Polymerase II

, , , , &
Pages 104-112 | Received 09 Jul 1999, Accepted 08 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Allison, L. A., Moyle, M., Shales, M., and Ingles, C. J.. 1985. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42:599–610
  • Allison, L. A., Wong, J. K.-C., Fitzpatrick, V. D., Moyle, M., and Ingles, C. J.. 1988. The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Mol. Cell. Biol. 8:321–329
  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K.. Current protocols in molecular biology 1 and 2: Greene Publishing Associates and Wiley-Interscience, New York, N.Y
  • Bartolomei, M. S., Halden, N. F., Cullen, C. R., and Corden, J. L.. 1988. 1991. Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of RNA polymerase II. Mol. Cell. Biol. 8:330–339
  • Carlson, M.. 1997. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu. Rev. Cell Dev. Biol. 13:1–23
  • Chen, J., and Moore, C.. 1992. Separation of factors required for cleavage and polyadenylation of yeast pre-mRNA. Mol. Cell. Biol. 12:3470–3481
  • Cho, E. J., Rodriguez, C. R., Takagi, T., and Buratowski, S.. 1998. Allosteric interactions between capping enzyme subunits and the RNA polymerase II carboxy-terminal domain. Genes Dev. 12:3482–3487
  • Cho, E. J., Takagi, T., Moore, C. R., and Buratowski, S.. 1997. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11:3319–3326
  • Cismowski, M. J., Laff, G. M., Solomon, M. J., and Reed, S. I.. 1995. KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity. Mol. Cell. Biol. 15:2983–2992
  • Corden, J. L., Cadena, D. L., Ahearn, J. J., and Dahmus, M. E.. 1985. A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc. Natl. Acad. Sci. USA 82:7934–7938
  • Cross, F. R., and Levine, K.. 1998. Molecular evolution allows bypass of the requirement for activation loop phosphorylation of the Cdc28 cyclin-dependent kinase. Mol. Cell. Biol. 18:2923–2931
  • Dahmus, M. E.. 1996. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271:19009–19012
  • Dantonel, J. C., Murthy, K. G., Manley, J. L., and Tora, L.. 1997. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 389:399–402
  • Eisenmann, D. M., Arndt, K. M., Ricupero, S. L., Rooney, J. W., and Winston, F.. 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6:1319–1331
  • Espinoza, F. H., Farrell, A., Nourse, J. L., Chamberlin, H. M., Gileadi, O., and Morgan, D. O.. 1998. Cak1 is required for Kin28 phosphorylation and activation in vivo. Mol. Cell. Biol. 18:6365–6373
  • Feaver, W. J., Svejstrup, J. Q., Henry, N. L., and Kornberg, R. D.. 1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79:1103–1109
  • Fresco, L. D., and Buratowski, S.. 1994. Active site of the mRNA capping enzyme guanylyltransferase from Saccharomyces cerevisiae: similarity to the nucleotidyl attachment motif of DNA and RNA ligases. Proc. Natl. Acad. Sci. USA 91:6624–6628
  • Fresco, L. D., and Buratowski, S.. 1996. Conditional mutants in the yeast mRNA capping enzyme show that the cap enhances, but is not required for, mRNA splicing. RNA 2:584–596
  • Gerber, H. P., Hagmann, M., Seipel, K., Georgiev, O., West, M. A., Litingtung, Y., Schaffner, W., and Corden, J. L.. 1995. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374:660–662
  • Guthrie, C., and Fink, G. R.. Guide to yeast genetics and molecular biology 194: Academic Press, Inc., Boston, Mass
  • Hengartner, C. J., Myer, V. E., Liao, S. M., Wilson, C. J., Koh, S. S., and Young, R. A.. 1998. 1991. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol. Cell 2:43–53
  • Hirose, Y., and Manley, J. L.. 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395:93–96
  • Hirose, Y., Tacke, R., and Manley, J. L.. 1999. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev. 13:1234–1239
  • Hirst, M., Kobor, M. S., Kuriakose, N., Greenblatt, J., and Sadowski, I.. 1999. GAL4 is regulated by the RNA polymerase II holoenzyme-associated cyclin-dependent protein kinase SRB10/CDK8. Mol. Cell 3:673–678
  • Ho, C. K., and Shuman, S.. 1999. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell 3:405–411
  • Ho, C. K., Sriskanda, V., McCracken, S., Bentley, D., Schwer, B., and Shuman, S.. 1998. The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 273:9577–9585
  • Jove, R., and Manley, J. L.. 1984. In vitro transcription from the adenovirus 2 Major Late Promoter utilizing templates truncated at promoter-proximal sites. J. Biol. Chem. 259:8513–8521
  • Kessler, M. M., Henry, M. F., Shen, E., Zhao, J., Gross, S., Silver, P. A., and Moore, C. L.. 1997. Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3′-end formation in yeast. Genes Dev. 11:2545–2556
  • Kessler, M. M., Zhao, J., and Moore, C. L.. 1996. Purification of the Saccharomyces cerevisiae cleavage/polyadenylation factor I. Separation into two components that are required for both cleavage and polyadenylation of mRNA 3′ ends. J. Biol. Chem. 271:27167–27175
  • Kim, E., Du, L., Bregman, D. B., and Warren, S. L.. 1997. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J. Cell Biol. 136:19–28
  • Kimmelman, J., Kaldis, P., Hengartner, C. J., Laff, G. M., Koh, S. S., Young, R. A., and Solomon, M. J.. 1999. Activating phosphorylation of the Kin28p subunit of yeast TFIIH by Cak1p. Mol. Cell. Biol. 19:4774–4787
  • Kuchin, S., and Carlson, M.. 1998. Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1. Mol. Cell. Biol. 18:1163–1171
  • Lee, J. M., and Greenleaf, A. L.. 1991. CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr. 1:149–167
  • Lee, J. M., and Greenleaf, A. L.. 1997. Modulation of RNA polymerase II elongation efficiency by C-terminal heptapeptide repeat domain kinase I. J. Biol. Chem. 272:10990–10993
  • Liao, S. M., Zhang, J., Jeffery, D. A., Koleske, A. J., Thompson, C. M., Chao, D. M., Viljoen, M., van Vuuren, H. J. J., and Young, R. A.. 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374:193–196
  • McCracken, S., Fong, N., Rosonina, E., Yankulov, K., Brothers, G., Siderovski, D., Hessel, A., Foster, S., Shuman, S., and Bentley, D. L.. 1997. 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11:3306–3318
  • McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S. D., Wickens, M., and Bentley, D. L.. 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357–361
  • Meisels, E., Gileadi, O., and Corden, J. L.. 1995. Partial truncation of the yeast RNA polymerase II carboxyl-terminal domain preferentially reduces expression of glycolytic genes. J. Biol. Chem. 270:31255–31261
  • Minvielle, S. L., Preker, P. J., and Keller, W.. 1994. RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3′-end processing factor. Science 266:1702–1705
  • Misteli, T., and Spector, D. L.. 1999. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol. Cell 3:697–705
  • Mizumoto, K., and Kaziro, Y.. 1987. Messenger RNA capping enzymes from eukaryotic cells. Prog. Nucleic Acid Res. 34:1–28
  • Mortillaro, M. J., Blencowe, B. J., Wei, X., Nakayasu, H., Du, L., Warren, S. L., Sharp, P. A., and Berezney, R.. 1996. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl. Acad. Sci. USA 93:8253–8257
  • Nonet, M., Scafe, C., Sexton, J., and Young, R.. 1987. Eukaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol. Cell. Biol. 7:1602–1611
  • Nonet, M. L., and Young, R. A.. 1989. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123:715–724
  • O'Brien, T., Hardin, S., Greenleaf, A., and Lis, J. T.. 1994. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370:75–77
  • Patturajan, M., Schulte, R. J., Sefton, B. M., Berezney, R., Vincent, M., Bensaude, O., Warren, S. L., and Corden, J. L.. 1998. Growth-related changes in phosphorylation of yeast RNA polymerase II. J. Biol. Chem. 273:4689–4694
  • Preker, P. J., Ohnacker, M., Minvielle, S. L., and Keller, W.. 1997. A multisubunit 3′ end processing factor from yeast containing poly(A) polymerase and homologues of the subunits of mammalian cleavage and polyadenylation specificity factor. EMBO J. 16:4727–4737
  • Rasmussen, E. B., and Lis, J. T.. 1993. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl. Acad. Sci. USA 90:7923–7927
  • Scafe, C., Chao, D., Lopes, J., Hirsch, J. P., Henry, S., and Young, R. A.. 1990. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 347:491–494
  • Scafe, C., Martin, C., Nonet, M., Podos, S., Okamura, S., and Young, R. A.. 1990. Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits. Mol. Cell. Biol. 10:1270–1275
  • Shuman, S.. 1995. Capping enzyme in eukaryotic mRNA synthesis. Prog. Nucleic Acid Res. 50:101–129
  • Sterner, D. E., Lee, J. M., Hardin, S. E., and Greenleaf, A. L.. 1995. The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin–cyclin-dependent kinase complex. Mol. Cell. Biol. 15:5716–5724
  • Stumpf, G., and Domdey, H.. 1996. Dependence of yeast pre-mRNA 3′-end processing on CFT1: a sequence homolog of the mammalian AAUAAA binding factor. Science 274:1517–1520
  • Weeks, J. R., Hardin, S. E., Shen, J., Lee, J. M., and Greenleaf, A. L.. 1993. Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: correlations with gene activity and transcript processing. Genes Dev. 7:2329–2344
  • West, M. L., and Corden, J. L.. 1995. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics 140:1223–1233
  • Yue, Z., Maldonado, E., Pillutla, R., Cho, H., Reinberg, D., and Shatkin, A. J.. 1997. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc. Natl. Acad. Sci. USA 94:12898–12903
  • Yuryev, A., Patturajan, M., Litingtung, Y., Joshi, R. V., Gentile, C., Gebara, M., and Corden, J. L.. 1996. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl. Acad. Sci. USA 93:6975–6980
  • Zehring, W. A., Lee, J. M., Weeks, J. R., Jokerst, R. S., and Greenleaf, A. L.. 1988. The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc. Natl. Acad. Sci. USA 85:3698–3702
  • Zhang, J., and Corden, J. L.. 1991. Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J. Biol. Chem. 266:2290–2296
  • Zhao, J., Kessler, M., and Moore, C.. 1997. Cleavage factor II of Saccharomyces cerevisiae contains homologues to subunits of the mammalian cleavage/polyadenylation specificity factor and exhibits sequence-specific, ATP-dependent interaction with precursor RNA. J. Biol. Chem. 272:10831–10838
  • Zhao, J., Kessler, M., Helmling, S., O'Connor, J. P., and Moore, C. L.. 1999. Pta1, a component of yeast CFII, is required for both cleavage and poly(A) addition of mRNA precursor. Mol. Cell. Biol. 19:7733–7740
  • Zhu, Y., Pe'ery, T., Peng, J., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H.. 1997. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 11:2622–2632

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.