17
Views
48
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Stabilizing Effects of Interruptions on Trinucleotide Repeat Expansions in Saccharomyces cerevisiae

&
Pages 173-180 | Received 03 Aug 1999, Accepted 24 Sep 1999, Published online: 28 Mar 2023

REFERENCES

  • Ashley, C. T.Jr., and Warren, S. T.. 1995. Trinucleotide repeat expansion and human disease. Annu. Rev. Genet. 29:703–728
  • Chung, M.-Y., Ranum, L. P. W., Duvick, L. A., Servadio, A., Zoghbi, H. Y., and Orr, H. T.. 1993. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat. Genet. 5:254–258
  • Eichler, E. E., Holden, J. J. A., Popovich, B. A., Reiss, A. L., Snow, K., Thibodeau, S. N., Richards, C. S., Ward, P. A., and Nelson, D. L.. 1994. Length of uninterrupted CGG repeats determines instability of the FMR1 gene. Nat. Genet. 8:88–94
  • Freudenreich, C. H., Stavenhagen, J. B., and Zakian, V. A.. 1997. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell. Biol. 17:2090–2098
  • Gacy, A. M., Goellner, G., Juranic, N., Macura, S., and McMurray, C. T.. 1995. Trinucleotide repeats that expand in human disease form hairpin structure in vitro. Cell 81:533–540
  • Gordenin, D. A., Kunkel, T. A., and Resnick, M. A.. 1997. Repeat expansion—all in a flap? Nat. Genet. 16:116–118
  • Gusella, J. F., and MacDonald, M. E.. 1996. Trinucleotide instability: a repeating theme in human inherited disorders. Annu. Rev. Med. 47:201–209
  • Hanahan, D.. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557–580
  • Hirst, M. C., Grewal, P. K., and Davies, K. E.. 1994. Precursor arrays for triplet repeat expansion at the fragile X locus. Hum. Mol. Genet. 3:1553–1560
  • Imbert, G., Saudou, F., Yvert, G., Devys, D., Trottier, Y., Garnier, J.-M., Weber, C., Mandel, J.-L., Cancel, G., Abbas, N., Durr, A., Didierjean, O., Stevanin, G., Agid, Y., and Brice, A.. 1996. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat. Genet. 14:285–291
  • Kramer, B., Kramer, W., Williamson, M. S., and Fogel, S.. 1989. Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Mol. Cell. Biol. 9:4432–4440
  • Kramer, P. R., Pearson, C. E., and Sinden, R. R.. 1996. Stability of triplet repeats of myotonic dystrophy and fragile X loci in human mismatch repair cell lines. Hum. Genet. 98:151–157
  • Kunst, C. B., and Warren, S. T.. 1994. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77:853–861
  • Lea, D. E., and Coulson, C. A.. 1948. The distribution of the number of mutants in bacterial populations. J. Genet. 49:264–284
  • Maurer, D. J., O'Callaghan, B. L., and Livingston, D. M.. 1998. Mapping the polarity of changes that occur in interrupted CAG repeat tracts in yeast. Mol. Cell. Biol. 18:4597–4604
  • Miret, J. J., Pessoa-Brandao, L., and Lahue, R. S.. 1998. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95:12438–12443
  • Montermini, L., Andermann, E., Labuda, M., Richter, A., Pandolfo, M., Cavalcanti, F., Pianese, L., Iodice, L., Farina, G., Monticeli, A., Turano, M., Filla, A., De Michele, G., and Cocozza, S.. 1997. The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum. Mol. Genet. 6:1261–1266
  • Paulson, H. L., and Fischbeck, K. H.. 1996. Trinucleotide repeats in neurogenetic disorders. Annu. Rev. Neurosci. 19:79–107
  • Pearson, C. E., Eichler, E. E., Lorenzetti, D., Kramer, S. F., Zoghbi, H. Y., Nelson, D. L., and Sinden, R. R.. 1998. Interruptions in the triplet repeats of SCAI and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37:2701–2708
  • Pearson, C. E., Ewel, A., Acharya, S., Fishel, R. A., and Sinden, R. R.. 1997. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum. Mol. Genet. 6:1117–1123
  • Pulst, S.-M., Nechiporuk, A., Nechiporuk, T., Gispert, S., Chen, X.-N., Lopes-Cendes, I., Pearlman, S., Starkman, S., Orozco-Diaz, G., Lunkes, A., DeJong, P., Rouleau, G. A., Auburger, G., Korenberg, J. R., Figueroa, C., and Sahba, S.. 1996. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat. Genet. 14:269–276
  • Richards, R. I., and Sutherland, G. R.. 1992. Dynamic mutations: a new class of mutations causing human disease. Cell 70:709–712
  • Sanpei, K., Takano, H., Igarashi, S., Sato, T., Oyake, M., Sasaki, H., Wakisaka, A., Tashiro, K., Ishida, Y., Ikeuchi, T., Koide, R., Saito, M., Sato, A., Tanaka, T., Hanyu, S., Takiyama, Y., Nishizawa, M., Shimizu, N., Nomura, Y., Segawa, M., Iwabuchi, K., Eguchi, I., Tanaka, H., Takahashi, H., and Tsuji, S.. 1996. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat. Genet. 14:277–284
  • Schiestl, R. H., and Gietz, D.. 1989. High-efficiency transformation of intact yeast cells by single stranded nucleic acids as carrier. Curr. Genet. 16:339–346
  • Snow, K., Tester, D. J., Kruckeberg, K. E., Schaid, D. J., and Thibodeau, S. N.. 1994. Sequence analysis of the fragile X trinucleotide repeat: implications for the origin of the fragile X mutation. Hum. Mol. Genet. 3:1543–1551
  • Zhong, N., Yang, W., Dobkin, C., and Brown, W. T.. 1995. Fragile X gene instability: anchoring AGGs and linked microsatellites. Am. J. Hum. Genet. 57:351–361

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.