18
Views
25
CrossRef citations to date
0
Altmetric
Gene Expression

Pre-mRNA Splicing by the Essential Drosophila Protein B52: Tissue and Target Specificity

&
Pages 181-186 | Received 13 May 1999, Accepted 27 Sep 1999, Published online: 28 Mar 2023

REFERENCES

  • Brand, A. H., and Perrimon, N.. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415
  • Cáceras, J. F., Stamm, S., Helfman, D. M., and Krainer, A. R.. 1994. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265:1706–1709
  • Cavaloc, Y., Popielarz, M., Fuchs, J. P., Gattoni, R., and Stevenin, J.. 1994. Characterization and cloning of the human splicing factor 9G8: a novel 35 kDa factor of the serine/arginine protein family. EMBO J. 13:2639–2649
  • Champlin, D. T., Frasch, M., Saumweber, H., and Lis, J. T.. 1991. Characterization of a Drosophila protein associated with boundaries of transcriptionally active chromatin. Genes Dev. 5:1611–1621
  • Darnell, J. E.Jr.. 1982. Variety in the level of gene control in eukaryotic cells. Nature 297:365–371
  • Dignam, J. D., Lebovitz, R. M., and Roeder, R. G.. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489
  • Fu, X.-D.. 1993. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365:82–85
  • Fu, X.-D.. 1995. The superfamily of arginine/serine-rich splicing factors. RNA 1:663–680
  • Fu, X.-D., and Maniatis, T.. 1990. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature 343:437–441
  • Ge, H., and Manley, J. L.. 1990. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62:25–34
  • Hanamura, A., Cáceres, J. F., Mayeda, A., Franza, B. R.Jr., and Krainer, A. R.. 1998. Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 4:430–444
  • Heinrichs, V., and Baker, B. S.. 1995. The Drosophila SR protein RBP1 contributes to the regulation of doublesex alternative splicing by recognizing RBP1 RNA target sequences. EMBO J. 14:3987–4000
  • Kenan, D. J., Query, C. C., and Keene, J. D.. 1991. RNA recognition: towards identifying determinants of specificity. Trends Biochem. Sci. 16:214–220
  • Kim, Y.-J., Zuo, P., Manley, J. L., and Baker, B. S.. 1992. The Drosophila RNA-binding protein RBP1 is localized to transcriptionally active sites of chromosomes and shows a functional similarity to human splicing factor ASF/SF2. Genes Dev. 6:2569–2579
  • Kohtz, J. D., Jamison, S. F., Will, C. L., Zuo, P., Luhrmann, R., Garcia-Blanco, M. A., and Manley, J. L.. 1994. Protein-protein interactions and 5′-splice site recognition in mammalian mRNA precursors. Nature 368:119–124
  • Krainer, A. R., and Maniatis, T.. 1985. Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell 42:725–736
  • Kramer, A.. 1996. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65:367–409
  • Kraus, M. E., and Lis, J. T.. 1994. The concentration of B52, an essential splicing factor and regulator of splice site choice in vitro, is critical for Drosophila development. Mol. Cell. Biol. 14:5360–5370
  • Liu, H.-X., Zhuang, M., and Krainer, A. R.. 1998. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 12:1998–2012
  • Mayeda, A., Screaton, G. R., Chandler, S. D., Fu, X.-D., and Krainer, A. R.. 1999. Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements. Mol. Cell. Biol. 19:1853–1863
  • Mayeda, A., Zahler, A. M., Krainer, A., and Roth, M.. 1992. Two members of a conserved family of nuclear phosphoproteins are involved in pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 89:1301–1304
  • Peng, X., and Mount, S. M.. 1995. Genetic enhancement of RNA-processing defects by a dominant mutation in B52, the Drosophila gene for an SR protein splicing factor. Mol. Cell. Biol. 15:6273–6282
  • Reed, R., Griffith, J., and Maniatis, T.. 1988. Purification and visualization of native spliceosomes. Cell 53:949–962
  • Ring, H. Z., and Lis, J. T.. 1994. The SR protein B52/SRp55 is essential for Drosophila development. Mol. Cell. Biol. 14:7499–7506
  • Rio, D. C.. 1988. Accurate and efficient pre-mRNA splicing in Drosophila cell-free extracts. Proc. Natl. Acad. Sci. USA 85:2904–2908
  • Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K., and Engels, W. R.. 1988. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461–470
  • Roth, M. B., Murphy, C., and Gall, J. G.. 1990. A monoclonal antibody that recognizes a phosphorylated epitope stains lampbrush chromosome loops and small granules in the amphibian germinal vesicle. J. Cell Biol. 111:2217–2223
  • Roth, M. B., Zahler, A. M., and Stolk, J. A.. 1991. A conserved family of nuclear phosphoproteins localized to sites of polymerase II transcription. J. Cell Biol. 115:587–596
  • Rubin, G. M., and Spradling, A. C.. 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353
  • Rudner, D. Z., Kanaar, R., Breger, K. S., and Rio, D. C.. 1996. Mutations in the small subunit of the Drosophila U2AF splicing factor. Proc. Natl. Acad. Sci. USA 93:10333–10337
  • Screaton, G. R., Cáceres, J. F., Mayeda, A., Bell, M. V., Plebanski, M., Jackson, D. G., Bell, J. I., and Krainer, A. R.. 1995. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 14:4336–4349
  • Shi, H., Hoffman, B. E., and Lis, J. T.. 1997. A specific RNA hairpin loop structure binds the RNA recognition motifs of the Drosophila SR protein B52. Mol. Cell. Biol. 17:2649–2657
  • Simon, J. A., Sutton, C. A., Lobell, R. B., Glaser, R. L., and Lis, J. T.. 1985. Determinants of heat shock-induced chromosome puffing. Cell 40:805–817
  • Tacke, R., and Manley, J. L.. 1995. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14:3540–3551
  • Valcárcel, J., and Green, M. R.. 1996. The SR protein family: pleiotropic functions in pre-mRNA splicing. Trends Biochem. Sci. 21:296–301
  • Wang, J., and Manley, J. L.. 1995. Overexpression of the SR proteins ASF/SF2 and SC35 influences alternative splicing in vivo in diverse ways. RNA 1:335–346
  • Wang, J., Takagaki, Y., and Manley, J. L.. 1996. Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability. Genes Dev. 10:2588–2599
  • Wang, J., Xiao, S.-H., and Manley, J. L.. 1998. Genetic analysis of the SR protein ASF/SF2: interchangeability of RS domains and negative control of splicing. Genes Dev. 12:2222–2233
  • Wu, J. Y., and Maniatis, T.. 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75:1061–1070
  • Xiao, S.-H., and Manley, J. M.. 1997. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11:334–344
  • Zahler, A. M., Lane, W. S., Stolk, J. A., and Roth, M. B.. 1992. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6:837–847
  • Zahler, A. M., Neugebauer, K. M., Lane, W. S., and Roth, M. B.. 1993. Distinct functions of SR proteins in alternative pre-mRNA splicing. Science 260:219–222
  • Zahler, A. M., and Roth, M. B.. 1995. Distinct functions of SR proteins in recruitment of U1 small nuclear ribonucleoprotein to alternative 5′ splice sites. Proc. Natl. Acad. Sci. USA 92:2642–2646

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.