11
Views
88
CrossRef citations to date
0
Altmetric
Cell Growth and Development

ei24, a p53 Response Gene Involved in Growth Suppression and Apoptosis

, , &
Pages 233-241 | Received 26 Aug 1999, Accepted 07 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Bethwaite, P. B., Koreth, J., Herrington, C. S., and McGee, J. O.. 1995. Loss of heterozygosity occurs at the D11S29 locus on chromosome 11q23 in invasive cervical carcinoma. Br. J. Cancer 71:814–818
  • Boise, L. H., Gonzalez-Garcia, M., Postema, C. E., Ding, L., Lindsten, T., Turka, L. A., Mao, X., Nunez, G., and Thompson, C. B.. 1993. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608
  • Buckbinder, L., Talbott, R., Velasco-Miguel, S., Takenaka, I., Faha, B., Seizinger, B. R., and Kley, N.. 1995. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377:646–649
  • Canman, C. E., Gilmer, T. M., Coutts, S. B., and Kastan, M. B.. 1995. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev. 9:600–611
  • Chen, X., Ko, L. J., Jayaraman, L., and Prives, C.. 1996. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10:2438–2451
  • Chittenden, T., Flemington, C., Houghton, A. B., Ebb, R. G., Gallo, G. J., Elangovan, B., Chinnadurai, G., and Lutz, R. J.. 1995. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J. 14:5589–5596
  • Clarke, A. R., Purdie, C. A., Harrison, D. J., Morris, R. G., Bird, C. C., Hooper, M. L., and Wyllie, A. H.. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849–852
  • Deng, C., Zhang, P., Harper, J. W., Elledge, S. J., and Leder, P.. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684
  • Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A.Jr., Butel, J. S., and Bradley, A.. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221
  • el-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W., and Vogelstein, B.. 1992. Definition of a consensus binding site for p53. Nat. Genet. 1:45–49
  • el-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B.. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825
  • Friedlander, P., Legros, Y., Soussi, T., and Prives, C.. 1996. Regulation of mutant p53 temperature-sensitive DNA binding. J. Biol. Chem. 271:25468–25478
  • Hampton, G. M., Mannermaa, A., Winquist, R., Alavaikko, M., Blanco, G., Taskinen, P. J., Kiviniemi, H., Newsham, I., Cavenee, W. K., and Evans, G. A.. 1994. Loss of heterozygosity in sporadic human breast carcinoma: a common region between 11q22 and 11q23.3. Cancer Res. 54:4586–4589
  • Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J.. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816
  • Harvey, D., and Levine, A. J.. 1991. P53 alteration is a common event in the spontaneous immortalization of primary BALB/C murine fibroblasts. Genes Dev. 5:2375–2385
  • Herbst, R. A., Larson, A., Weiss, J., Cavenee, W. K., Hampton, G. M., and Arden, K. C.. 1995. A defined region of loss of heterozygosity at 11q23 in cutaneous malignant melanoma. Cancer Res. 55:2494–2496
  • Hinds, P. W., Finlay, C. A., Quartin, R. S., Baker, S. J., Fearon, E. R., Vogelstein, B., and Levine, A. J.. 1990. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1:571–580
  • Huettner, P. C., Gerhard, D. S., Li, L., Gersell, D. J., Dunnigan, K., Kamarasova, T., and Rader, J. S.. 1998. Loss of heterozygosity in clinical stage IB cervical carcinoma: relationship with clinical and histopathologic features. Hum. Pathol. 29:364–370
  • Hupp, T. R., Meek, D. W., Midgley, C. A., and Lane, D. P.. 1992. Regulation of the specific DNA binding function of p53. Cell 71:875–886
  • Israeli, D., Tessler, E., Haupt, Y., Elkeles, A., Wilder, S., Amson, R., Telerman, A., and Oren, M.. 1997. A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J. 16:4384–4392
  • Jacks, T., Remington, L., Williams, B. O., Schmitt, E. M., Halachmi, S., Bronson, R. T., and Weinberg, R. A.. 1994. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4:1–7
  • Jordan, M., Schallhorn, A., and Wurm, F. M.. 1996. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24:596–601
  • Knudson, C. M., Tung, K. S., Tourtellotte, W. G., Brown, G. A., and Korsmeyer, S. J.. 1995. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270:96–99
  • Ko, L. J., and Prives, C.. 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072
  • Lehar, S. M., Nacht, M., Jacks, T., Vater, C. A., Chittenden, T., and Guild, B. C.. 1996. Identification and cloning of EI24, a gene induced by p53 in etoposide-treated cells. Oncogene 12:1181–1187
  • Levine, A. J.. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331
  • Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G., and Evan, G. I.. 1995. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23:1686–1690
  • Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A., and Jacks, T.. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849
  • Miyashita, T., and Reed, J. C.. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299
  • Owen-Schaub, L. B., Zhang, W., Cusack, J. C., Angelo, L. S., Santee, S. M., Fujiwara, T., Roth, J. A., Deisseroth, A. B., Zhang, W. W., and Kruzel, E.. 1995. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol. Cell. Biol. 15:3032–3040
  • Packham, G., White, E. L., Eischen, C. M., Yang, H., Parganas, E., Ihle, J. N., Grillot, D. A., Zambetti, G. P., Nunez, G., and Cleveland, J. L.. 1998. Selective regulation of Bcl-XL by a Jak kinase-dependent pathway is bypassed in murine hematopoietic malignancies. Genes Dev. 12:2475–2487
  • Pietenpol, J. A., Tokino, T., Thiagalingam, S., El-Deiry, W. S., Kinzler, K. W., and Vogelstein, B.. 1994. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA 91:1998–2002
  • Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., and Vogelstein, B.. 1997. A model for p53-induced apoptosis. Nature 389:300–305
  • Quelle, F. W., Wang, J., Feng, J., Wang, D., Cleveland, J. L., Ihle, J. N., and Zambetti, G. P.. 1998. Cytokine rescue of p53-dependent apoptosis and cell cycle arrest is mediated by distinct Jak kinase signaling pathways. Genes Dev. 12:1099–1107
  • Reinke, V., and Lozano, G.. 1997. The p53 targets mdm2 and Fas are not required as mediators of apoptosis in vivo. Oncogene 15:1527–1534
  • Vater, C., Bartle, L., Dionne, C., Littlewood, T., and Goldmacher, V.. 1996. Induction of apoptosis by tamoxifen-activation of a p53-estrogen receptor fusion protein expressed in E1A and T24 H-ras transformed p53−/− mouse embryo fibroblasts. Oncogene 13:739–748
  • Waldman, T., Kinzler, K., and Vogelstein, B.. 1995. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55:5187–5190
  • Wu, G. S., Burns, T. F., McDonald, E. R.III, Jiang, W., Meng, R., Krantz, I. D., Kao, G., Gan, D. D., Zhou, J. Y., Muschel, R., Hamilton, S. R., Spinner, N. B., Markowitz, S., Wu, G., and El-Deiry, W. S.. 1997. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat. Genet. 17:141–143
  • Wyllie, A.. 1997. Apoptosis. Clues in the p53 murder mystery. Nature 389:237–238
  • Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., and Oren, M.. 1991. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347
  • Zambetti, G. P., Bargonetti, J., Walker, K., Prives, C., and Levine, A. J.. 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6:1143–1152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.