13
Views
99
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Dbf4p, an Essential S Phase-Promoting Factor, Is Targeted for Degradation by the Anaphase-Promoting Complex

, , &
Pages 242-248 | Received 08 Feb 1999, Accepted 01 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Andrews, B., and Measday, V.. 1998. The cyclin family of budding yeast: abundant use of a good idea. Trends Genet 14:66–72
  • Aparicio, O. M., Weinstein, D. M., and Bell, S. P.. 1997. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM complexes and Cdc45p during S phase. Cell 91:59–69
  • Bousset, K., and Diffley, J. F. X.. 1998. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 12:480–490
  • Brown, G. W., and Kelly, T. J.. 1998. Purification of Hsk1, a minichromosome maintenance protein kinase from fission yeast. J. Biol. Chem. 273:22083–22090
  • Chapman, J. W., and Johnston, L. H.. 1989. The yeast gene, DBF4, essential for entry into S phase is cell cycle regulated. Exp. Cell Res. 180:419–428
  • Charles, J. F., Jaspersen, S. L., Tinker-Kulberg, R. L., Hwang, L., Szidon, A., and Morgan, D. O.. 1998. The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Curr. Biol. 8:497–507
  • Cocker, J. H., Piatti, S., Santocanale, C., Nasmyth, K., and Diffley, J. F. X.. 1996. An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379:180–182
  • Cohen-Fix, O., Peters, J. M., Kirschner, M. W., and Koshland, D.. 1996. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10:3081–3093
  • Dahmann, C., Diffley, J. F. X., and Nasmyth, K. A.. 1995. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of origins to a pre-replicative state. Curr. Biol. 5:1257–1269
  • Dalton, S., and Whitbread, L.. 1995. Cell-cycle-regulated nuclear import and export of Cdc47, a protein essential for initiation of DNA-replication in budding yeast. Proc. Natl. Acad. Sci. USA 92:2514–2518
  • Desdouets, C., Santocanale, C., Drury, L. S., Perkins, G., Foiani, M., Plevani, P., and Diffley, J. F. X.. 1998. Evidence for a Cdc6p-independent mitotic resetting event involving DNA polymerase α. EMBO J. 17:4139–4146
  • Diffley, J. F. X.. 1996. Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev. 10:2819–2830
  • Diffley, J. F. X., Cocker, J. H., Dowell, S. J., and Rowley, A.. 1994. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78:303–316
  • Donaldson, A. D., Fangman, W. L., and Brewer, B. J.. 1998. Cdc7 is required throughout the yeast S phase to activate replication origins. Genes Dev. 12:491–501
  • Donovan, S., Harwood, J., Drury, L. S., and Diffley, J. F. X.. 1997. Cdc6-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc. Natl. Acad. Sci. USA 94:5611–5616
  • Dowell, S. J., Romanowski, P., and Diffley, J. F. X.. 1994. Interaction of Dbf4, the Cdc7 protein kinase regulatory subunit, with yeast replication origins in vivo. Science 265:1243–1246
  • Drury, L. S., Perkins, G., and Diffley, J. F. X.. 1997. The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J. 16:5966–5976
  • Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D., and Hunt, T.. 1983. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396
  • Hardy, C. F., Dryga, O., Seematter, S., Pahl, P. M., and Sclafani, R. A.. 1997. Mcm5/Cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc. Natl. Acad. Sci. USA 94:3151–3155
  • Hardy, C. F. J., and Pautz, A.. 1996. A novel role for Cdc5p in DNA replication. Mol. Cell. Biol. 16:6775–6782
  • Harlow, E., and Lane, D.. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Heichman, K. A., and Roberts, J. M.. 1998. CDC16 controls initiation at chromosome replication origins. Mol. Cell 1:457–463
  • Heichman, K. A., and Roberts, J. M.. 1996. The yeast CDC16 and CDC27 genes restrict DNA replication to once per cell cycle. Cell 85:39–48
  • Hennessy, K. M., Clark, C. D., and Botstein, D.. 1990. Subcellular localization of yeast CDC46 varies with the cell cycle. Genes Dev. 4:2252–2263
  • Hess, G. F., Drong, R. F., Weiland, K. L., Slightom, J. L., Sclafani, R. A., and Hollingsworth, R. E.. 1998. A human homolog of the yeast CDC7 gene is overexpressed in some tumors and transformed cell lines. Gene 211:133–140
  • Irniger, S., Piatti, S., Michaelis, C., and Nasmyth, K.. 1995. Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81:269–278
  • Jackson, A. L., Pahl, P. M., Harrison, K., Rosamond, J., and Sclafani, R. A.. 1993. Cell cycle regulation of the yeast CDC7 protein kinase by association with the DBF4 protein. Mol. Cell. Biol. 13:2899–2908
  • Jaspersen, S. L., Charles, J. F., Tinker-Kulberg, R. L., and Morgan, D. O.. 1998. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol. Biol. Cell. 9:2803–2817
  • Jiang, W., and Hunter, T.. 1997. Identification and characterization of a human protein kinase related to budding yeast Cdc7p. Proc. Natl. Acad. Sci. USA 94:14320–14325
  • Juang, Y. L., Huang, J., Peters, J. M., McLaughlin, M. E., Tai, C. Y., and Pellman, D.. 1997. APC-mediated proteolysis of Ase1 and the morphogenesis of Ase1 and the morphogenesis of the mitotic spindle. Science 275:1311–1314
  • Kitada, K., Johnston, L. H., Sugino, T., and Sugino, A.. 1992. Temperature-sensitive cdc7 mutations of Saccharomyces cerevisiae are suppressed by the DBF4 gene, which is required for the G1/S cell cycle transition. Genetics 131:21–29
  • Lei, M., Kawasaki, Y., Young, M. R., Kihara, M., Sugino, A., and Tye, B. K.. 1997. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 11:3365–3374
  • Liang, C., and Stillman, B.. 1997. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 11:3375–3386
  • Masai, H., Miyake, T., and Arai, K.-I.. 1995. hsk1+, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication. EMBO J. 14:3094–3104
  • Micklem, G., Rowley, A., Harwood, J., Nasmyth, K., and Diffley, J. F. X.. 1993. Yeast origin recognition complex is involved in DNA replication and transcriptional silencing. Nature 366:87–89
  • Peters, J. M.. 1998. SCF and APC: the yin and yang of cell cycle regulated proteolysis. Curr. Opin. Cell. Biol. 10:759–768
  • Piatti, S.. 1997. Cell cycle regulation of S phase entry in Saccharomyces cerevisiae. Prog. Cell. Cycle Res. 3:143–156
  • Piatti, S., Bohm, T., Cocker, J. H., Diffley, J. F. X., and Nasmyth, K.. 1996. Activation of S-phase promoting CDKs in late G1 defines a “point of no return” after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev. 10:1516–1531
  • Pichler, S., Piatti, S., and Nasmyth, K.. 1997. Is the yeast anaphase promoting complex needed to prevent re-replication during G2 and M phases? EMBO J. 16:5988–5997
  • Prinz, S., Hwang, E. S., Visintin, R., and Amon, A.. 1998. The regulation of Cdc20 proteolysis reveals a role for APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr. Biol. 8:750–760
  • Rechsteiner, M., and Rogers, S. W.. 1996. Pest sequences and regulation by proteolysis. Trends Biochem. Sci. 21:267–271
  • Santocanale, C., and Diffley, J. F. X.. 1998. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395:615–618
  • Sato, N., Arai, K., and Masai, H.. 1997. Human and Xenopus cDNAs encoding budding yeast cdc7-related kinases—in-vitro phosphorylation of mcm subunits by a putative human homolog of cdc7. EMBO J. 16:4340–4351
  • Schwab, M., Annegret, S. L., and Seufert, W.. 1997. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90:683–693
  • Schwob, E., Bohm, T., Mendenhall, M. D., and Nasmyth, K.. 1994. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79:233–244
  • Shirayama, M., Zachariae, W., Ciosk, R., and Nasmyth, K.. 1998. The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J. 17:1336–1349
  • Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., and Futcher, B.. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9:3273–3297
  • Tanaka, T., Knapp, D., and Nasmyth, K.. 1997. Loading of an Mcm protein onto DNA-replication origins is regulated by Cdc6p and CDKs. Cell 90:649–660
  • Thomas, B. J., and Rothstein, R.. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630
  • Toone, W. M., Aerne, B. L., Morgan, B. A., and Johnston, L. H.. 1997. Getting started: regulating the initiation of DNA replication in yeast. Annu. Rev. Microbiol. 51:125–149
  • Tugal, T., Zou-Yang, X. H., Pappin, D., Canas, B., Kobayashi, R., Hunt, T., and Stillman, B.. 1998. The Orc4p and Orc5p subunits of the Xenopus and human origin recognition complex are related to Orc1p and Cdc6p. J. Biol. Chem. 273:32421–32429
  • Visintin, R., Prinz, S., and Amon, A.. 1997. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278:460–463
  • Yan, H., Merchant, A. M., and Tye, B.-K.. 1993. Cell cycle-regulated nuclear localisation of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes Dev. 7:2149–2160

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.