35
Views
95
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Activated Mutants of SHP-2 Preferentially Induce Elongation of Xenopus Animal Caps

, , &
Pages 299-311 | Received 12 Jul 1999, Accepted 01 Sep 1999, Published online: 28 Mar 2023

REFERENCES

  • Allard, J. D., Chang, H. C., Herbst, R., McNeill, H., and Simon, M. A.. 1996. The SH2-containing tyrosine phosphatase corkscrew is required during signaling by sevenless, Ras1 and Raf. Development 122:1137–1146
  • Amaya, E., Musci, T. J., and Kirschner, M. W.. 1991. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66:257–260
  • Barford, D., and Neel, B. G.. 1998. Revealing mechanisms for SH2 domain-mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 6:249–254
  • Barrett, K., Leptin, M., and Settleman, J.. 1997. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 91:905–915
  • Brieher, W., and Gumbiner, B.. 1994. Regulation of C-Cadherin function during activin induced morphogenesis of Xenopus animal caps. J. Cell Biol. 126:519–527
  • Cleghon, V., Gayko, U., Copeland, T. D., Perkins, L. A., Perrimon, N., and Morrison, D. K.. 1996. Drosophila terminal structure development is regulated by the compensatory activities of positive and negative phosphotyrosine signaling sites on the Torso RTK. Genes Dev. 10:566–577
  • Conlon, F., Sedgwick, S., Weston, K., and Smith, J.. 1996. Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development 122:2427–2435
  • Cool, D. E., Andreassen, P. R., Tonks, N. K., Krebs, E. G., Fischer, E. H., and Margolis, R. L.. 1992. Cytokinetic failure and asynchronous nuclear division in BHK cells overexpressing a truncated protein-tyrosine-phosphatase. Proc. Natl. Acad. Sci. USA 89:5422–5426
  • Cunliffe, V., and Smith, J.. 1992. Ectopic mesoderm formation in Xenopus embryos caused by widespread expression of a Brachyury homolgue. Nature 358:427–430
  • Cunliffe, V., and Smith, J.. 1994. Specification of mesodermal pattern in Xenopus laevis by interactions between Brachyury, noggin, and Xwnt-8. EMBO J. 13:349–359
  • Frangioni, J. V., Beahm, P. H., Shifrin, V., Jost, C. A., and Neel, B. G.. 1992. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the Endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68:545–560
  • Fujioka, Y., Matozaki, T., Noguchi, T., Iwamatsu, A., Yamao, T., Takahashi, N., Tsuda, M., Takada, T., and Kasuga, M.. 1996. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol. Cell. Biol. 16:6887–6899
  • Gotoh, Y., Masuyama, N., Suzuki, A., Ueno, N., and Nishida, E.. 1995. Involvement of the MAP kinase cascade in Xenopus mesoderm induction. EMBO J. 14:2491–2498
  • Green, J., Howes, G., Symes, K., Cooke, J., and Smith, J.. 1990. The biological effects of XTC-MIF: quantitative comparison with Xenopus bFGF. Development 108:173–183
  • Gu, H., Pratt, J. C., Burakoff, S. J., and Neel, B. G.. 1998. Cloning and characterization of the major SHP-2 binding protein in hematopoietic cells (p97) reveals a novel pathway for cytokine-induced gene activation. Mol. Cell 2:729–740
  • Hacker, U., and Perrimon, N.. 1998. DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 12:274–284
  • Henry, G., and Melton, D.. 1998. Mixer, a homeobox gene required for endoderm development. Science 281:91–96
  • Herbst, R., Carroll, P. M., Allard, J. D., Schilling, J., Raabe, T., and Simon, M. A.. 1996. Daughter of Sevenless is a substrate of the phosphotyrosine phosphatase corkscrew and functions during Sevenless signaling. Cell 85:899–909
  • Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J., and Shoelson, S. E.. 1998. Crystal structure of the SH2 domain phosphatase SHP-2. Cell 98:441–450
  • Holgado-Madruga, M., Emlet, D. R., Moscatello, D. K., Godwin, A. K., and Wong, A. J.. 1996. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 379:560–564
  • Hudson, C., Clements, D., Friday, R., Stott, D., and Woodland, H.. 1997. Xsox17α and -β mediate endoderm formation in Xenopus. Cell 91:397–405
  • Isaacs, H., Pownall, M., and Slack, J.. 1994. eFGF regulates Xbra expression during Xenopus gastrulation. EMBO J. 13:4469–4481
  • Isaacs, H., Tannahill, D., and Slack, J.. 1992. Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification. Development 114:711–720
  • Isaacs, H. V.. 1997. New perspectives on the role of the fibroblast growth factor family in amphibian development. Cell. Mol. Life Sci. 53:350–361
  • Keller, R., and Winklbauer, R.. 1992. Cellular basis of amphibian gastrulation. Curr. Top. Dev. Biol. 27:39–89
  • Kharitonenkov, A., Chen, Z., Sures, I., Wang, H., Schilling, J., and Ullrich, A.. 1997. A family of proteins that inhibit signaling though tyrosine kinase receptors. Nature 386:181–186
  • Khosravi-Far, R., Solski, P., Clark, G., Kinch, M., and Der, C.. 1995. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15:6443–6453
  • Kim, S.-H., Yamamoto, A., Bouwmeester, T., Agius, E., and De Robertis, E.. 1998. The role of Paraxial Protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125:4681–4691
  • Klinghoffer, R. A., and Kazlauskas, A.. 1995. Identification of a putative Syp substrate, the PDGFβ receptor. J. Biol. Chem. 270:22208–22217
  • Kuhl, M., Finnemann, S., Binder, O., and Wedlich, D.. 1996. Dominant negative expression of a cytoplasmically deleted mutant of XB/U-cadherin disturbs mesoderm migration during gastrulation in Xenopus laevis. Mech. Dev. 54:71–82
  • Kuhl, M., and Wedlich, D.. 1996. Xenopus cadherins: sorting out types and functions in embryogenesis. Dev. Dyn. 207:121–134
  • LaBonne, C., Burke, B., and Whitman, M.. 1995. Role of MAP kinase in mesoderm induction and axial patterning during Xenopus development. Development 121:1475–1486
  • Lee, C.-H., and Gumbiner, B. M.. 1995. Disruption of gastrulation movements in Xenopus by a dominant-negative mutant for C-cadherin. Dev. Biol. 171:363–373
  • Lorenzen, J. A., Dadabay, C. Y., and Fischer, E. H.. 1995. COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus. J. Cell Biol. 131:631–643
  • MacNicol, A. M., Muslin, A. J., and Williams, L. T.. 1993. Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. Cell 73:571–583
  • Manes, S., Mira, E., Gomes-Mouton, C., Zhao, Z., Lacalle, R., and Martines-A, C.. 1999. Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Mol. Cell. Biol. 19:3125–3135
  • Neel, B. G.. 1997. Role of phosphatases in lymphocyte activation. Curr. Opin. Immunol. 9:405–420
  • Neel, B. G., and Tonks, N. K.. 1997. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell Biol. 9:193–204
  • Noguchi, T., Matozaki, T., Horita, K., Fujioka, Y., and Kasuga, M.. 1994. Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated ras activation. Mol. Cell. Biol. 14:6674–6682
  • Oh, E.-S., Gu, H., Saxton, T., Timms, J., Hausdorff, S., Frevert, E., Kahn, B., Pawson, T., Neel, B., and Thomas, S.. 1999. Regulation of early events in integrin signaling by the protein-tyrosine phosphatase SHP-2. Mol. Cell. Biol. 19:3205–3215
  • O'Reilly, A. M., and Neel, B. G.. 1998. Structural determinants of SHP-2 function and specificity in Xenopus mesoderm induction. Mol. Cell. Biol. 18:161–177
  • Pluskey, S., Wandless, T. J., Walsh, C. T., and Shoelson, S. E.. 1995. Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains. J. Biol. Chem. 270:2987–2900
  • Raabe, T., Riesgo-Escovar, J., Liu, X., Bausenwein, B. S., Deak, P., Maroy, P., and Hafen, E.. 1996. DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between sevenless and Ras1 in Drosophila. Cell 85:911–920
  • Sano, S., Ohnishi, H., Omori, A., Hasegawa, J., and Kubota, M.. 1997. BIT, an immune antigen receptor-like molecule in the brain. FEBS Lett. 411:327–334
  • Saxton, T., and Pawson, T.. 1999. Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Proc. Natl. Acad. Sci. USA 96:3790–3795
  • Saxton, T. M., Henkemeyer, M., Gasca, S., Shen, R., Rossi, D. J., Shalaby, F., Feng, G.-S., and Pawson, T.. 1997. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase SHP-2. EMBO J. 16:2352–2364
  • Schulte-Merker, S., and Smith, J.. 1995. Mesoderm formation in response to Brachyury requires FGF signalling. Curr. Biol. 5:62–67
  • Shi, Z.-Q., Lu, W., and Feng, G.-S.. 1998. The Shp-2 tyrosine phosphatase has opposite effects in mediating the activation of extracellular signal-regulated and c-Jun NH2-terminal mitogen-activated protein kinases. J. Biol. Chem. 273:4904–4908
  • Smith, J. C.. 1995. Mesoderm-inducing factors and mesodermal patterning. Curr. Opin. Cell Biol. 7:856–861
  • Smith, J. C.. 1993. Mesoderm-inducing factors in early vertebrate development. EMBO J. 12:4463–4470
  • Smith, J. C., and Howard, J. E.. 1992. Mesoderm-inducing factors and the control of gastrulation. Dev. Suppl. 1992:127–136
  • Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D., and Herrmann, B. G.. 1991. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67:79–87
  • Sokol, S. Y.. 1993. Mesoderm formation in Xenopus ectodermal explants overexpressing Xwnt8: evidence for a cooperating signal reaching animal pole by gastrulation. Development 118:1335–1342
  • Symes, K., and Smith, J. C.. 1987. Gastrulation movements provide an early marker of mesoderm induction in Xenopus laevis. Development 101:339–349
  • Tang, T. L., Freeman, R. M., O'Reilly, A. M., Neel, B. G., and Sokol, S. Y.. 1995. The SH2-containing protein tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell 80:473–483
  • Tapon, N., and Hall, A.. 1997. Rho, Rac, and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 9:86–92
  • Timms, J. F., Carlberg, K., Gu, H., Chen, H., Kamatkar, S., Rohrschneider, L. R., and Neel, B. G.. 1998. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Mol. Cell. Biol. 18:3838–3850
  • Tsuda, M., Matozaki, T., Fukunaga, K., Fujioka, Y., Imamoto, A., Noguchi, T., Takada, T., Yamao, T., Takeda, H., Ochi, F., Yamamoto, T., and Kasuga, M.. 1998. Integrin-mediated tyrosine phosphorylation of SHPS-1 and its association with SHP-2. J. Biol. Chem. 273:13223–13229
  • Umbhauer, M., Marshall, C. J., Mason, C. S., Old, R. W., and Smith, J. C.. 1995. Mesoderm induction in Xenopus caused by activation of MAP kinase. Nature 376:58–62
  • Van Aelst, L., and D'Souza-Schorey, C.. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295–2322
  • Van Vactor, D., O'Reilly, A. O., and Neel, B. G.. 1998. Genetic analysis of protein tyrosine phosphatases. Curr. Opin. Gen. Dev. 8:112–126
  • Weidner, K. M., Di Cesare, S., Sachs, M., Brinkmann, V., Behrens, J., and Birechmeier, W.. 1996. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384:173–176
  • Whitman, M., and Melton, D. A.. 1992. Involvement of p21ras in Xenopus mesoderm induction. Nature 357:252–254
  • Yamauchi, K., and Pessin, J. E.. 1995. Epidermal growth factor-induced association of the SHPTP2 protein tyrosine phosphatase with a 115-kDa phosphotyrosine protein. J. Biol. Chem. 270:14871–14874
  • Yu, D.-H., Qu, C.-K., Henegariu, O., Lu, X., and Feng, G.-S.. 1998. Protein-tyrosine phosphatase SHP-2 regulates cell spreading, migration and focal adhesion. J. Biol. Chem. 273:21125–21131

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.