57
Views
245
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Drosophila MSL Complex Acetylates Histone H4 at Lysine 16, a Chromatin Modification Linked to Dosage Compensation

, , , , , & show all
Pages 312-318 | Received 30 Aug 1999, Accepted 05 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Amrein, H., and Axel, R.. 1997. Genes expressed in neurons of adult male Drosophila. Cell 88:459–469
  • Ashburner, M.. 1989. Drosophila: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Ausio, J., and van Holde, K. E.. 1986. Histone hyperacetylation: its effects on nucleosome conformation and stability. Biochemistry 25:1421–1428
  • Bashaw, G. J., and Baker, B. S.. 1995. The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development 121:3245–3258
  • Bashaw, G. J., and Baker, B. S.. 1997. The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell 89:789–798
  • Bone, J. R., Lavender, J., Richman, R., Palmer, M. J., Turner, B. M., and Kuroda, M. I.. 1994. Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev. 8:96–104
  • Bonner, W. M., West, M. H., and Stedman, J. D.. 1980. Two-dimensional gel analysis of histones in acid extracts of nuclei, cells, and tissues. Eur. J. Biochem. 109:17–23
  • Borrow, J., Stanton, V. P.Jr., Andresen, J. M., Becher, R., Behm, F. G., Chaganti, R. S., Civin, C. I., Disteche, C., Dube, I., Frischauf, A. M., Horsman, D., Mitelman, F., Volinia, S., Watmore, A. E., and Housman, D. E.. 1996. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet. 14:33–41
  • Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G., Roth, S. Y., and Allis, C. D.. 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851
  • Cairns, B. R., Kim, Y. J., Sayre, M. H., Laurent, B. C., and Kornberg, R. D.. 1994. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl. Acad. Sci. USA 91:1950–1954
  • Cairns, B. R., Lorch, Y., Li, Y., Zhang, M., Lacomis, L., Erdjument-Bromage, H., Tempst, P., Du, J., Laurent, B., and Kornberg, R. D.. 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87:1249–1260
  • Clarke, A. S., Lowell, J. E., Jacobson, S. J., and Pillus, L.. 1999. Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell. Biol. 19:2515–2526
  • Copps, K., Richman, R., Lyman, L. M., Chang, K. A., Rampersad-Ammons, J., and Kuroda, M. I.. 1998. Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly. EMBO J. 17:5409–5417
  • Di Nocera, P. P., and Dawid, I. B.. 1983. Transient expression of genes introduced into cultured cells of Drosophila. Proc. Natl. Acad. Sci. USA 80:7095–7098
  • Franke, A., and Baker, B. S.. 1999. The roX1 and roX2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol. Cell 4:117–122
  • Georgel, P. T., Tsukiyama, T., and Wu, C.. 1997. Role of histone tails in nucleosome remodeling by Drosophila NURF. EMBO J. 16:4717–4726
  • Grant, P. A., Duggan, L., Cote, J., Roberts, S. M., Brownell, J. E., Candau, R., Ohba, R., Owen-Hughes, T., Allis, C. D., Winston, F., Berger, S. L., and Workman, J. L.. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11:1640–1650
  • Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A., and Lucchesi, J. C.. 1997. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16:2054–2060
  • Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R., and Kadonaga, J. T.. 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145–155
  • Kelley, R. L., Meller, V. H., Gordadze, P. R., Roman, G., Davis, R. L., and Kuroda, M. I.. 1999. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98:513–522
  • Kelley, R. L., Solovyeva, I., Lyman, L. M., Richman, R., Solovyev, V., and Kuroda, M. I.. 1995. Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81:867–877
  • Kelley, R. L., Wang, J., Bell, L., and Kuroda, M. I.. 1997. Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387:195–199
  • Koelle, M. R., Talbot, W. S., Segraves, W. A., Bender, M. T., Cherbas, P., and Hogness, D. S.. 1991. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67:59–77
  • Kuo, M. H., Zhou, J., Jambeck, P., Churchill, M. E., and Allis, C. D.. 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12:627–639
  • Lee, C. G., Chang, K. A., Kuroda, M. I., and Hurwitz, J.. 1997. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. EMBO J. 16:2671–2681
  • Lucchesi, J. C.. 1998. Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr. Opin. Genet. Dev. 8:179–184
  • Meller, V. H., Wu, K. H., Roman, G., Kuroda, M. I., and Davis, R. L.. 1997. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88:445–457
  • Mizzen, C. A., and Allis, C. D.. 1998. Linking histone acetylation to transcriptional regulation. Cell. Mol. Life Sci. 54:6–20
  • O'Connell, P. O., and Rosbash, M.. 1984. Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 12:5495–5513
  • Ohba, R., Steger, D. J., Brownell, J. E., Mizzen, C. A., Cook, R. G., Cote, J., Workman, J. L., and Allis, C. D.. 1999. A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila. Mol. Cell. Biol. 19:2061–2068
  • Papoulas, O., Beek, S. J., Moseley, S. L., McCallum, C. M., Sarte, M., Shearn, A., and Tamkun, J. W.. 1998. The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development 125:3955–3966
  • Peterson, C. L., Dingwall, A., and Scott, M. P.. 1994. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc. Natl. Acad. Sci. USA 91:2905–2908
  • Reifsnyder, C., Lowell, J., Clarke, A., and Pillus, L.. 1996. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat. Genet. 14:42–49
  • Richter, L., Bone, J. R., and Kuroda, M. I.. 1996. RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1:325–336
  • Ryner, L. C., and Baker, B. S.. 1991. Regulation of doublesex pre-mRNA processing occurs by 3′-splice site activation. Genes Dev. 5:2071–2085
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Smith, E. R., Eisen, A., Gu, W., Sattah, M., Pannuti, A., Zhou, J., Cook, R. G., Lucchesi, J. C., and Allis, C. D.. 1998. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc. Natl. Acad. Sci. USA 95:3561–3565
  • Sobel, R. E., Cook, R. G., and Allis, C. D.. 1994. Non-random acetylation of histone H4 by a cytoplasmic histone acetyltransferase as determined by novel methodology. J. Biol. Chem. 269:18576–18582
  • Tse, C., Sera, T., Wolffe, A. P., and Hansen, J. C.. 1998. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18:4629–4638
  • Tsukiyama, T., Daniel, C., Tamkun, J., and Wu, C.. 1995. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83:1021–1026
  • Turner, B. M., Birley, A. J., and Lavender, J.. 1992. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384
  • Utley, R. T., Ikeda, K., Grant, P. A., Cote, J., Steger, D. J., Eberharter, A., John, S., and Workman, J. L.. 1998. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394:498–502
  • Varga-Weisz, P. D., Wilm, M., Bonte, E., Dumas, K., Mann, M., and Becker, P. B.. 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598–602 (Erratum, 389:1003, 1997.)
  • Wittschieben, B. O., Otero, G., de Bizemont, T., Fellows, J., Erdjument-Bromage, H., Ohba, R., Li, Y., Allis, C. D., Tempst, P., and Svejstrup, J. Q.. 1999. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4:123–128
  • Wolffe, A. P., and Hayes, J. J.. 1999. Chromatin disruption and modification. Nucleic Acids Res. 27:711–720
  • Yamamoto, T., and Horikoshi, M.. 1997. Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J. Biol. Chem. 272:30595–30598

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.