30
Views
85
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Characterization of Insulin-Responsive GLUT4 Storage Vesicles Isolated from 3T3-L1 Adipocytes

&
Pages 416-427 | Received 18 Aug 1999, Accepted 20 Sep 1999, Published online: 28 Mar 2023

REFERENCES

  • Birnbaum, M. J., and James, D. E.. 1995. The insulin-regulatable glucose transporter GLUT-4. Curr. Opin. Endocrinol. Diabetes 2:383–391
  • Bock, J. B., Klumperman, J., Davanger, S., and Scheller, R. H.. 1997. Syntaxin 6 functions in trans-Golgi network vesicle trafficking. Mol. Biol. Cell 8:1261–1271
  • Clark, S. F., Martin, S., Carozzi, A. J., Hill, M. M., and James, D. E.. 1998. Intracellular localization of phosphatidylinositide 3-kinase and insulin receptor substrate-1 in adipocytes: potential involvement of a membrane skeleton. J. Cell Biol. 140:1211–1225
  • Courtoy, P. J., Quintart, J., and Baudhuin, P.. 1984. Shift of equilibrium density induced 3,3′-diaminobenzidine cytochemistry: a new procedure for the analysis and purification of peroxidase-containing organelles. J. Cell Biol. 98:870–876
  • Cushman, S. W., and Wardzala, L. J.. 1980. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell: apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255:4758–4762
  • Del Vecchio, R. L., and Pilch, P. F.. 1991. Phosphatidylinositol 4-kinase is a component of glucose transporter (GLUT4)-containing vesicles. J. Biol. Chem. 266:13278–13283
  • Ford, T., Graham, J., and Rickwood, D.. 1994. Iodixanol: a nonionic iso-osmotic centrifugation medium for the formation of self-generated gradients. Anal. Biochem. 220:360–366
  • Frost, S. C., and Lane, M. D.. 1985. Evidence for the involvement of viscinal sulfhydryl groups in insulin-activated hexose transport in 3T3-L1 adipocytes. J. Biol. Chem. 260:2646–2652
  • Gruenberg, J., and Maxfield, F. R.. 1995. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7:552–563
  • Hanpeter, D., and James, D. E.. 1995. Characterisation of the intracellular GLUT-4 compartment. Mol. Membr. Biol. 12:263–269
  • Herman, G. A., Bonzelius, F., Cieutat, A. M., and Kelly, R. B.. 1994. A distinct class of storage vesicles, identified by expression of the glucose transporter GLUT4. Proc. Natl. Acad. Sci. USA 91:12750–12754
  • Hill, M. M., Clark, S. F., and James, D. E.. 1997. Insulin-regulatable phosphoproteins in 3T3-L1 adipocytes from detergent-insoluble complexes not associated with caveolin. Electrophoresis 18:2629–2637
  • Hudson, A. W., Fingar, D. C., Seidner, G. A., Griffiths, G., Burke, B., and Birnbaum, M. J.. 1993. Targeting of the insulin-responsive glucose transporter (GLUT4) to the regulated secretory pathway in PC12 cells. J. Cell Biol. 122:579–588
  • James, D. E., Brown, R., Navarro, J., and Pilch, P. F.. 1988. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature 333:183–185
  • James, D. E., and Pilch, P. F.. 1988. Fractionation of endocytic vesicles and glucose-transporter-containing vesicles in rat adipocytes. Biochem. J. 256:725–732
  • James, D. E., Strube, M., and Mueckler, M.. 1989. Molecular cloning and characterisation of an insulin-regulatable glucose transporter. Nature 338:83–87
  • James, D. E., Piper, R. C., and Slot, J. W.. 1994. Insulin stimulation of GLUT-4 translocation: a model for regulated recycling. Trends Cell Biol. 4:120–126
  • Kandror, K. V., and Pilch, P. F.. 1994. Identification and isolation of glycoproteins that translocate to the cell surface from GLUT4-enriched vesicles in an insulin-dependent fashion. J. Biol. Chem. 269:138–142
  • Kandror, K. V., and Pilch, P. F.. 1994. gp160, a tissue-specific marker for insulin-activated glucose transport. Proc. Natl. Acad. Sci. USA 91:8017–8021
  • Kandror, K. V., and Pilch, P. F.. 1996. Compartmentalization of protein traffic in insulin-sensitive cells. Am. J. Physiol. 271:E1–E14
  • Keller, S. R., Scott, H. M., Mastick, C. C., Aebersold, R., and Lienhard, G. E.. 1995. Cloning and characterisation of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J. Biol. Chem. 270:23612–23618
  • Kristiansen, S., Ramlal, T., and Klip, A.. 1998. Phosphatidylinositol 4-kinase, but not phosphatidylinositol 3-kinase, is present in GLUT4-containing vesicles from rat skeletal muscle. Biochem. J. 335:351–356
  • Laemmli, U. K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
  • Lin, B.-Z., Pilch, P. F., and Kandror, K. V.. 1997. Sortilin is a major protein component of Glut4-containing vesicles. J. Biol. Chem. 272:24145–24247
  • Livingstone, C., James, D. E., Rice, J. E., Hanpeter, D., and Gould, G. W.. 1996. Compartment ablation analysis of the insulin-responsive glucose transporter (GLUT4) in 3T3-L1 adipocytes. Biochem. J. 315:487–495
  • Martin, S., Tellam, J., Livingstone, C., Slot, J. W., Gould, G. W., and James, D. E.. 1996. Glucose transporter-4 and vesicle-associated membrane protein-2 are segregated from recycling endosomes in insulin-regulatable cells. J. Cell Biol. 134:625–635
  • Martin, S., Rice, J. E., Gould, G. W., Slot, J. W., and James, D. E.. 1997. The glucose transporter GLUT4 and the aminopeptidase vp165 colocalise in tubulovesicular elements in adipocytes and cardiomyocytes. J. Cell Sci. 110:2281–2291
  • Mastick, C. C., Aebersold, R., and Lienhard, G. E.. 1994. Characterisation of a major protein in GLUT4 vesicles. J. Biol. Chem. 269:6089–6092
  • Morgenstern, J. P., and Land, H.. 1990. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell lines. Nucleic Acids Res. 18:3587–3596
  • Morris, N. J., Ducret, A., Aebersold, R., Ross, S. A., Keller, S. R., and Lienhard, G. E.. 1997. Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane. J. Biol. Chem. 272:9388–9392
  • Morris, N. J., Ross, S. A., Lane, W. S., Moestrup, S. K., Petersen, C. M., Keller, S. R., and Lienhard, G. E.. 1998. Sortilin is the major 110-kDa protein in GLUT4 vesicles from adipocytes. J. Biol. Chem. 273:3582–3587
  • Oho, C., Seino, S., and Takahashi, M.. 1995. Expression and complex formation of soluble N-ethyl-maleimide-sensitive factor attachment protein (SNAP) receptors in clonal rat endocrine cells. Neurosci. Lett. 186:208–210
  • Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D.. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90:8392–8396
  • Piper, R. C., Hess, L. J., and James, D. E.. 1991. Differential sorting of two glucose transporters expressed in insulin-sensitive cells. Am. J. Physiol. 260:C570–C580
  • Piper, R. C., Tai, C., Kulesza, P., Pang, S., Warnock, D., Baenziger, J., Slot, J. W., Geuze, H. J., Puri, C., and James, D. E.. 1993. GLUT-4 NH2 terminus contains a phenylalanine-based targeting motif that regulates intracellular sequestration. J. Cell Biol. 121:1221–1232
  • Rabouille, C., Hui, N., Hunte, F., Kieckbusch, R., Berger, E. G., Warren, G., and Nilsson, T.. 1995. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J. Cell Sci. 108:1617–1627
  • Ross, S. A., Scott, H. M., Morris, M. J., Leung, W.-Y., Mao, F., Lienhard, G. E., and Keller, S. R.. 1996. Characterisation of the insulin-regulated membrane aminopeptidase in 3T3-L1 adipocytes. J. Biol. Chem. 27:3328–3332
  • Roth, J., Taatjes, D. J., Lucocq, J. M., Weinstein, J., and Paulson, J. C.. 1985. Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell 43:287–295
  • Sheff, D. R., Daro, E. A., Hull, M., and Mellman, I.. 1999. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 145:123–139
  • Simpson, I. A., Yver, D. R., Hissin, P. J., Wardzala, L. J., Karnieli, E., Salans, L. B., and Cushman, S. W.. 1983. Insulin-stimulated translocation of glucose transporters in isolated rat adipose cells: characterisation of subcellular fractions. Biochim. Biophys. Acta 763:393–407
  • Sleeman, M. W., Donegen, N. P., Heller-Harrison, R., Lane, W. S., and Czech, M. P.. 1998. Association of acyl-CoA synthetase-1 with GLUT4-containing vesicles. J. Biol. Chem. 273:3132–3135
  • Slot, J. W., Geuze, H. J., Gigengack, S., Lienhard, G. E., and James, D. E.. 1991. Immuno-localisation of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J. Cell. Biol. 113:123–135
  • Slot, J. W., Geuze, H. J., Gigengack, S., James, D. E., and Lienhard, G. E.. 1991. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc. Natl. Acad. Sci. USA 88:7815–7819
  • Slot, J. W., Garruti, G., Martin, S., Oorschot, V., Posthuma, G., Kraegan, E. W., Laybutt, R., Thibault, G., and James, D. E.. 1997. GLUT-4 is targeted to secretory granules in rat atrial cardiomyocytes. J. Cell Biol. 137:1–12
  • Stoorvogel, W., Geuze, H. J., and Strous, G. J.. 1987. Sorting of endocytosed transferrin and asialoglycoprotein occurs immediately after internalization in HepG2 cells. J. Cell Biol. 104:1261–1268
  • Stoorvogel, W., Geuze, H. J., Griffith, J. M., and Strous, G. J.. 1988. The pathways of endocytosed transferrin and secretory proteins are connected in the trans-Golgi reticulum. J. Cell Biol. 106:1821–1829
  • Stoorvogel, W., Strous, G. J., Geuze, H. J., Oorschot, V., and Schwartz, A. L.. 1991. Late endosomes derived from early endosomes by maturation. Cell 65:417–427
  • Stoorvogel, W., Oorschot, V., and Geuze, H. J.. 1996. A novel class of clathrin-coated vesicles budding from endosomes. J. Cell Biol. 132:21–33
  • Suzuki, K., and Kono, T.. 1980. Evidence that insulin causes the translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl. Acad. Sci. USA 77:2542–2545
  • Szebenyi, G., and Rotwein, P.. 1991. Differential regulation of mannose 6-phosphate receptors and ligands during the myogenic development of C2 cells. J. Biol. Chem. 266:5534–5539
  • Tanner, L. I., and Lienhard, G. E.. 1987. Insulin elicits a redistribution of transferrin receptors in 3T3-L1 adipocytes through an increase in the rate constant for receptor externalisation. J. Biol. Chem. 262:8975–8980
  • Tanner, L. I., and Lienhard, G. E.. 1987. Localization of transferrin receptors and insulin-like growth factor II receptors in vesicles from 3T3-L1 adipocytes that contain intracellular glucose transporters. J. Cell Biol. 108:1537–1545
  • Tellam, J. T., Macaulay, S. L., McIntosh, S., Hewish, D. R., Ward, C. W., and James, D. E.. 1997. Characterization of munc-18c and syntaxin-4 in 3T3-L1 adipocytes. Putative role in insulin-dependent movement of GLUT4. J. Biol. Chem. 272:6179–6186
  • Ullrich, O., Reinsch, S., Urbé, S., Zerial, M., and Parton, R. G.. 1996. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135:914–924
  • Van der Sluijs, P., Hull, M., Zahraoui, A., Tavitian, A., Goud, B., and Mellman, I.. 1991. The small GTP-binding protein rab4 is associated with early endosomes. Proc. Natl. Acad. Sci. USA 88:6313–6317
  • Wei, M. L., Bonzelius, F., Scully, R. M., Kelly, R. B., and Herman, G. A.. 1998. GLUT4 and transferrin receptor are differentially sorted along the endocytic pathway in CHO cells. J. Cell Biol. 140:565–575
  • West, M. A., Lucocq, J. M., and Watts, C.. 1994. Antigen processing and class II MHC peptide-loading compartments in human B-lymphoblastoid cells. Nature 369:147–151
  • Yang, J., and Holman, G. D.. 1993. Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin stimulated 3T3-L1 cells. J. Biol. Chem. 268:4600–4603
  • Yeh, J.-I., Verhey, K. J., and Birnbaum, M. J.. 1995. Kinetic analysis of glucose transporter trafficking in fibroblasts and adipocytes. Biochemistry 34:15523–15531

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.