8
Views
34
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

A Double-Strand Break in a Chromosomal LINE Element Can Be Repaired by Gene Conversion with Various Endogenous LINE Elements in Mouse Cells

, &
Pages 54-60 | Received 21 Jul 1999, Accepted 27 Sep 1999, Published online: 28 Mar 2023

REFERENCES

  • Adair, G. M., Nairn, R. S., Wilson, J. H., Seidman, M. M., Brotherman, K. A., Mackinnon, C., and Scheerer, J. B.. 1989. Targeted homologous recombination at the adenine phosphoribosyltransferase locus in Chinese hamster cells. Proc. Natl Acad. Sci. USA 86:4574–4578
  • Aratani, Y., Okazaki, R., and Koyama, H.. 1992. End extension repair of introduced targeting vectors mediated by homologous recombination in mammalian cells. Nucleic Acids Res. 20:4795–4801
  • Ausubel, F. M., Brent, K., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K.. 1992. Current protocols in molecular biology. John Wiley and Sons, New York, N.Y
  • Belmaaza, A., Wallenburg, J. C., Brouillette, S., Gusew, N., and Chartrand, P.. 1990. Genetic exchange between endogenous and exogenous LINE-1 repetitive elements in mouse cells. Nucleic Acids Res. 18:6385–6391
  • Belmaaza, A., and Chartrand, P.. 1994. One-sided invasion events in homologous recombination at double-strand breaks. Mutat. Res. 314:199–208
  • Belmaaza, A., Milot, E., Villemure, J.-F., and Chartrand, P.. 1994. Interference of DNA sequence divergence with precise recombinational DNA repair in mammalian cells. EMBO J. 13:5355–5360
  • Brenneman, M., Gimble, F. S., and Wilson, J. H.. 1996. Stimulation of intrachromosomal homologous recombination in human cells by electroporation with site-specific endonucleases. Proc. Natl Acad. Sci. USA 93:3608–3612
  • Brown, S. D. M., and Dover, G.. 1981. Organization and evolutionary progress of a dispersed repetitive family of sequences in widely separated rodent genomes. J. Mol. Biol. 150:441–466
  • Burwinkel, B., and Kilimann, M. W.. 1998. Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human. J. Mol. Biol. 277:513–517
  • DeBerardinis, R. J., Goodier, J. L., Ostertag, E. M., Kazazian, H. H.Jr.. 1998. Rapid amplification of a retrotransposon subfamily is evolving in the mouse genome. Nat. Genet. 20:288–290
  • Derbyshire, M. K., Epstein, L. H., Young, C. S. H., Munz, P. L., and Fishel, R.. 1994. Nonhomologous recombination in human cells. Mol. Cell. Biol. 14:156–169
  • Donoho, G., Jasin, M., and Berg, P.. 1998. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol. Cell. Biol. 18:4070–4078
  • Elliott, B., Richardson, C., Winderbaum, J., Nickoloff, J. A., and Jasin, M.. 1998. Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell. Biol. 18:93–101
  • Ellis, J., and Bernstein, A.. 1989. Gene targeting with retroviral vectors, recombination by gene conversion into regions of nonhomology. Mol. Cell. Biol. 9:1621–1627
  • Haber, J. E.. 1992. Mating-type gene switching in Saccharomyces cerevisiae. Trends Genet. 8:446–452
  • Hendrickson, E. A.. 1997. Insights from model systems: cell-cycle regulation of mammalian DNA double-strand-break repair. Am. J. Hum. Genet. 61:795–800
  • Huang, L.-C., Clarkin, K. C., and Wahl, G. M.. 1996. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc. Natl Acad. Sci. USA 93:4827–4832
  • Hutchison, C. A.III, Hardies, S. C., Loeb, D. D., Shehee, W. R., and Edgell, M. H.. 1989. LINEs and related retroposons: long interspersed repeated sequences in the eucaryotic genome Mobile DNA. Berg, D. E., and Howe, M. M. 593–617 American Society for Microbiology, Washington, D.C.
  • Jasin, M.. 1996. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12:224–228
  • Lebel, M., Webster, M., Muller, W. J., Royal, A., Gauthier, J., and Mes-Masson, A.-M.. 1995. Transgenic mice bearing the polyomavirus large T antigen directed by 2,1 kb of the keratin 19 promoter develop bronchiolar papillary tumors with progression to lung adenocarcinomas. Cell Growth Differ. 6:1591–1600
  • Liang, F., Romanienko, P. J., Weaver, D. T., Jeggo, P. A., and Jasin, M.. 1996. Chromosomal double-strand break repair in Ku80-deficient cells. Proc. Natl Acad. Sci. USA 93:8929–8933
  • Liang, F., Han, M., Romanienko, P. J., and Jasin, M.. 1998. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl Acad. Sci. USA 95:5172–5177
  • Loeb, D. D., Padgett, R. W., Hardies, S. C., Shehee, W. R., Comer, M. B., Edgell, M. H., Hutchison, C. A.III.. 1986. The sequence of a large L1md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Mol. Cell. Biol. 6:168–182
  • Martin, S. L., Voliva, C. F., Hardies, S. C., Edgell, M. H., Hutchison, C. A.III.. 1985. Tempo and mode of concerted evolution in the L1 repeat family of mice. Mol. Biol. Evol. 2:127–140
  • McCormack, W. T., and Thompson, C. B.. 1990. Chicken IgL variable region gene conversions display pseudogene donor preference and 5′ to 3′ polarity. Genes Dev. 4:548–558
  • Mudgett, J. S., and Taylor, W. D.. 1990. Recombination between irradiated shuttle vector DNA and chromosomal DNA in African green monkey kidney cells. Mol. Cell. Biol. 10:37–46
  • Nass, T. P., Deberardinis, R. J., Moran, J. V., Ostertag, E. M., Kingsmore, S. F., Seldin, M. F., Hayashizaki, Y., Martin, S. L., and Kazazian, H. H.. 1998. An actively retrotransposing, novel subfamily of mouse L1 elements. EMBO J. 17:590–597
  • Nicolas, A. P., and Young, C. S. H.. 1994. Characterization of DNA end joining in a mammalian cell nuclear extract: junction formation is accompanied by nucleotide loss, which is limited and uniform but not site specific. Mol. Cell. Biol. 14:170–180
  • North, P., Ganesh, A., and Thacker, J.. 1990. The rejoining of double-strand breaks in DNA by human cell extracts. Nucleic Acids Res. 18:6205–6210
  • Parket, A., Inbar, O., and Kupiec, M.. 1995. Recombination of Ty elements in yeast can be induced by a double-strand break. Genetics 140:67–77
  • Pfeiffer, P., and Vielmetter, W.. 1988. Joining of nonhomologous DNA double strand breaks in vitro. Nucleic Acis Res. 16:907–924
  • Puchta, H., Dujon, B., and Hohn, B.. 1996. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc. Natl Acad. Sci. USA 93:5055–5060
  • Richard, M., Belmaaza, A., Gusew, N., Wallenburg, J. C., and Chartrand, P.. 1994. Integration of a vector containing a repetitive LINE-1 element in the human genome. Mol. Cell. Biol. 14:6689–6695
  • Richardson, C., Moynahan, M. E., and Jasin, M.. 1998. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12:3831–3842
  • Roth, D. B., and Wilson, J. H.. 1986. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol. Cell. Biol. 6:4295–4304
  • Rouet, P., Smith, F., and Jasin, M.. 1994. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl Acad. Sci. USA 91:6064–6068
  • Rouet, P., Smith, F., and Jasin, M.. 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14:8096–8106
  • Sanger, F., Nicklen, S., and Coulson, A. R.. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74:5463–5467
  • Sargent, R. G., Brenneman, M. A., and Wilson, J. H.. 1997. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17:267–277
  • Saxton, J. A., and Martin, S. L.. 1998. Recombination between subtypes creates a mosaic lineage of LINE-1 that is expressed and actively retrotransposing in the mouse genome. J. Mol. Biol. 280:611–622
  • Schichman, S. A., Severynse, D. M., Edgell, M. H., Hutchinson, C. A.III.. 1992. Strand-specific LINE-1 transcription in mouse F9 cells originates from the youngest phylogenetic subgroup of LINE-1 elements. J. Mol. Biol. 224:559–574
  • Schwartz, A., Chan, D. C., Brown, L. G., Alagappan, R., Pettay, D., Disteche, C., McGillivray, B., de la Chapelle, A., and Page, D. C.. 1998. Reconstructing hominid Y evolution: X-homologous block, created by X-Y transposition, was disrupted by Yp inversion through LINE-LINE recombination. Hum. Mol. Genet. 7:1–11
  • Segal, Y., Peissel, B., Renieri, A., de Marchi, M., Ballabio, A., Pei, Y., and Zhou, J.. 1999. LINE-1 elements at the sites of molecular rearrangements in Alport syndrome-diffuse leiomyomatosis. Am. J. Hum. Genet. 64:62–69
  • Taghian, D. G., and Nickoloff, J. A.. 1997. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol. Cell. Biol. 17:6386–6393
  • Vamvakas, S., Vock, E. H., and Lutz, W. K.. 1997. On the role of DNA double-strand breaks in toxicity and carcinogenesis. Crit. Rev. Toxicol. 27:155–174
  • Van der Ploeg, L. H. T., Gottesdien, K., and Lee, M. G.-S.. 1992. Antigenic variation in the African trypanosome. Trends Genet. 8:452–456
  • Voliva, C. F., Jahn, C. L., Comer, M. B., Hutchison, C. A.III, and Edgell, M. H.. 1983. The L1Md long interspersed repeat family in the mouse: almost all examples are truncated at one end. Nucleic Acids Res. 11:8847–8859

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.