10
Views
75
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Histone H1 Is Dispensable for Methylation-Associated Gene Silencing in Ascobolus immersusand Essential for Long Life Span

, , &
Pages 61-69 | Received 27 Jul 1999, Accepted 28 Sep 1999, Published online: 28 Mar 2023

REFERENCES

  • Allan, J., Mitchell, T., Harborne, N., Bohm, L., and Crane-Robinson, C.. 1986. Roles of H1 domains in determining higher order chromatin structure and H1 location. J. Mol. Biol. 187:591–601
  • Antequera, F., Boyes, J., and Bird, A. P.. 1990. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62:503–514
  • Ball, D. J., Gross, D. S., and Garrard, W. T.. 1983. 5-Methylcytosine is localized in nucleosomes that contain histone H1. Proc. Natl. Acad. Sci. USA 80:5490–5494
  • Bouvet, P., Dimitrov, S., and Wolffe, A. P.. 1994. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev. 8:1147–1159
  • Campoy, F. J., Meehan, R. R., McKay, S., Nixon, J., and Bird, A. P.. 1995. Binding of histone H1 to DNA is indifferent to methylation at CpG sequences. J. Biol. Chem. 270:26473–26481
  • Colot, V., Maloisel, L., and Rossignol, J.-L.. 1996. Interchromosomal transfer of epigenetic states in Ascobolus: transfer of DNA methylation is mechanistically related to homologous recombination. Cell 86:855–864
  • Croston, G. E., Kerrigan, L. A., Lira, L. M., Marshak, D. R., and Kadonaga, J. T.. 1991. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251:643–649
  • Cusick, M. E., Lee, K. S., DePamphilis, M. L., and Wassarman, P. M.. 1983. Structure of chromatin at deoxyribonucleic acid replication forks: nuclease hypersensitivity results from both prenucleosomal deoxyribonucleic acid and an immature chromatin structure. Biochemistry 22:3873–3884
  • Faugeron, G., Goyon, C., and Grégoire, A.. 1989. Stable allele replacement and unstable non-homologous integration events during transformation of Ascobolus immersus. Gene 76:109–119
  • Faugeron, G., Rhounim, L., and Rossignol, J.-L.. 1990. How does the cell count the number of ectopic copies of a gene in the premeiotic inactivation process acting in Ascobolus immersus? Genetics 124:585–591
  • Ge, H., and Roeder, R. G.. 1994. The high mobility protein HMG1 can reversibly inhibit clasII gene transcription by interaction with the TATA-binding protein. J. Biol. Chem. 269:17136–17140
  • Goyon, C., Barry, C., Grégoire, A., Faugeron, G., and Rossignol, J.-L.. 1996. Methylation of DNA repeats of decreasing sizes in Ascobolus immersus. Mol. Cell. Biol. 16:3054–3065
  • Goyon, C., and Faugeron, G.. 1989. Targeted transformation of Ascobolus immersus and de novo methylation of the resulting duplicated DNA sequences. Mol. Cell. Biol. 9:2818–2827
  • Goyon, C., Faugeron, G., and Rossignol, J.-L.. 1988. Molecular cloning and characterization of the met2 gene from Ascobolus immersus. Gene 63:297–308
  • Goyon, C., Nogueira, T. I. V., and Faugeron, G.. 1994. Perpetuation of cytosine methylation in Ascobolus immersus implies a novel type of maintenance methylase. J. Mol. Biol. 240:42–51
  • Goyon, C., Rossignol, J.-L., and Faugeron, G.. 1996. Native DNA repeats and methylation in Ascobolus. Nucleic Acids Res. 24:3348–3356
  • Gruenbaum, Y., Szyf, M., Cedar, H., and Razin, A.. 1983. Methylation of replicating and post-replicating mouse L-cell DNA. Proc. Natl. Acad. Sci. USA 80:4919–4921
  • Hartman, P. G., Chapman, G. E., Moss, T., and Bradbury, E. M.. 1977. Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. The three structural regions of the histone H1 molecule. Eur. J. Biochem. 77:45–51
  • Holliday, R., and Pugh, J. E.. 1975. DNA modification mechanisms and gene activity during development. Science 187:226–232
  • Irelan, J., and Selker, E.. 1997. Cytosine methylation associated with repeat-induced point mutation causes epigenetic gene silencing in Neurospora crassa. Genetics 146:509–23
  • Jost, J.-P., and Hofsteenge, J.. 1992. The repressor MDBP-2 is a member of the histone H1 family that binds preferentially in vitro and in vivo to methylated nonspecific DNA sequences. Proc. Natl. Acad. Sci. USA 89:9499–9503
  • Kandolf, H.. 1994. The H1A histone variant is an in vivo represssor of oocyte-type 5S gene transcription in Xenopus laevis embryos. Proc. Natl. Acad. Sci. USA 91:7257–7261
  • Kass, S. U., Pruss, D., and Wolffe, A. P.. 1997. How does DNA methylation repress transcription? Trends Genet. 13:444–449
  • Keshet, I., Lieman-Hurwitz, J., and Cedar, H.. 1986. DNA methylation affects the formation of active chromatin. Cell 44:2560–2564
  • Khadake, J. R., and Rao, M. R.. 1995. DNA- and chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin. Biochemistry 34:15792–15801
  • Khochbin, S., and Wolffe, A. P.. 1994. Developmentally regulated expression of linker-histone variants in vertebrates. Eur. J. Biochem. 225:501–510
  • Landsman, D.. 1996. Histone H1 in Saccharomyces cerevisiae: a double mystery solved? Trends Biochem. Sci. 21:287–288
  • Leonhardt, H., Page, A. W., Weier, H. U., and Bestor, T. H.. 1992. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71:865–873
  • Malagnac, F., Wendel, B., Goyon, C., Faugeron, G., Zickler, D., Rossignol, J.-L., Noyer-Weidner, M., Vollmayr, P., Trautner, T. A., and Walter, J.. 1997. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91:281–290
  • Maloisel, L., and Rossignol, J.-L.. 1998. Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev. 12:1381–1389
  • McArthur, M., and Thomas, J. O.. 1996. A preference of histone H1 for methylated DNA. EMBO J. 15:1705–1714
  • Mittelsten Scheid, O., Afsar, K., and Paszkowski, J.. 1998. Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis. Proc. Natl. Acad. Sci. USA 95:632–637
  • Nan, X., Campoy, F. J., and Bird, A.. 1997. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–481
  • Nightingale, K., Dimitrov, S., Reeves, R., and Wolffe, A. P.. 1996. Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. EMBO J. 15:548–561
  • Nightingale, K., and Wolffe, A. P.. 1995. Methylation at CpG sequences does not influence histone H1 binding to a nucleosome including a Xenopus borealis 5 S rRNA gene. J. Biol. Chem. 270:4197–4200
  • Ohsumi, K., Katagiri, C., and Kishimoto, T.. 1993. Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 262:2033–2035
  • Patterton, H. G., Landel, C. C., Landsman, D., Peterson, C. L., and Simpson, R. T.. 1998. The biochemical and phenotypic characterization of Hho1p, the putative linker histone H1 of Saccharomyces cerevisiae. J. Biol. Chem. 273:7268–7276
  • Pruss, D., Bartholomew, B., Persinger, J., Hayes, J., Arents, G., Moudrianakis, E. N., and Wolffe, A. P.. 1996. An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Science 274:614–617
  • Ramakrishnan, V., Finch, J. T., Graziano, V., Lee, P. L., and Sweet, R. M.. 1993. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362:219–223
  • Ramón, A., Muro-Pastor M. I., Scazzocchio C. and Gonzales R.. Deletion of the unique gene encoding a typical histone H1 has no apparent phenotype in Aspergillus nidulans. Mol. Microbiol., in press.
  • Razin, A.. 1998. CpG methylation, chromatin structure and gene silencing—a three-way connection. EMBO J. 17:4905–4908
  • Rhounim, L., Grégoire, A., Salama, S., and Faugeron, G.. 1994. Clustering of multiple transgene integrations in highly-unstable Ascobolus immersus transformants. Curr. Genet. 26:344–351
  • Rhounim, L., Rossignol, J.-L., and Faugeron, G.. 1992. Epimutation of repeated genes in Ascobolus immersus. EMBO J. 11:4451–4457
  • Riggs, A. D.. 1975. X-inactivation, differentiation and DNA methylation. Cytogenet. Cell. Genet. 14:9–25
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Schlissel, M. S., and Brown, D. D.. 1989. 1984. The transcriptional regulation of Xenopus 5s RNA genes in chromatin: the roles of active stable transcription complexes and histone H1. Cell 37:903–913
  • Selker, E. U.. 1990. Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet. 24:579–613
  • Selker, E. U.. 1998. Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc. Natl. Acad. Sci. USA 95:9430–9435
  • Sera, T., and Wolffe, A. P.. 1998. Role of histone H1 as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 5S rRNA genes. Mol. Cell. Biol. 18:3668–3680
  • Shen, X., and Gorovsky, M. A.. 1996. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell 86:475–483
  • Shen, X., Yu, L., Weir, J. W., and Gorovsky, M. A.. 1995. Linker histones are not essential and affect chromatin condensation in vivo. Cell 82:47–56
  • Stam, M., Mol, J. N., and Kooter, J. M.. 1997. The silence of genes in transgenic plants. Ann. Bot. 79:3–12
  • Steinbach, O. C., Wolffe, A. P., and Rupp, R. A.. 1997. Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature 389:395–399
  • Thoma, F., Koller, T., and Klug, A.. 1979. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83:403–427
  • Ura, K., Nightingale, K., and Wolffe, A.. 1996. Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression. EMBO J. 15:4959–4969
  • Ushinsky, S. C., Bussey, H., Ahmed, A. A., Wang, Y., Friesen, J., Williams, B. A., and Storms, R. K.. 1997. Histone H1 in Saccharomyces cerevisiae. Yeast 13:151–161
  • Weintraub, H.. 1984. Histone-H1-dependent chromatin superstructures and the suppression of gene activity. Cell 38:17–27
  • Wells, D., and McBride, C.. 1989. A comprehensive compilation and alignment of histones and histone genes. Nucleic Acids Res. 17:311–346
  • Wolffe, A. P.. 1989. Dominant and specific repression of Xenopus oocyte 5S RNA genes and satellite I DNA by histone H1. EMBO J. 8:527–537
  • Worcel, A., Han, S., and Wong, M. L.. 1978. Assembly of newly replicated chromatin. Cell 15:969–977
  • Wu, M., Allis, C. D., Richman, R., Cook, R. G., and Govorsky, M. A.. 1986. An intervening sequence in an unusual histone H1 gene of Tetrahymena thermophila. Proc. Natl. Acad. Sci. USA 83:8674–8678
  • Zardo, G., Marenzi, S., and Caiafa, P.. 1998. H1 histone as a trans-acting factor involved in protecting genomic DNA from full methylation. Biol. Chem. 379:647–654

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.