83
Views
107
CrossRef citations to date
0
Altmetric
Gene Expression

A Model System for Activation-Induced Alternative Splicing of CD45 Pre-mRNA in T Cells Implicates Protein Kinase C and Ras

&
Pages 70-80 | Received 22 Jul 1999, Accepted 30 Sep 1999, Published online: 28 Mar 2023

REFERENCES

  • Adams, M. D., Rudner, D. Z., and Rio, D. C.. 1996. Biochemistry and regulation of pre-mRNA splicing. Curr. Opin. Cell Biol. 8:331–339
  • Akbar, A. N., Terry, L., Timms, A., Beverley, P. C. L., and Janossy, G.. 1988. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J. Immunol. 140:2171–2178
  • Bell, E. B., and Sparshott, S. M.. 1990. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature 348:163–166
  • Berget, S. M.. 1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270:2411–2414
  • Birkeland, M. L., Johnson, P., Trowbridge, I. S., and Pure, E.. 1989. Changes in CD45 isoform expression accompany antigen-induced murine T cell activation. Proc. Natl. Acad. Sci. USA 86:6734–6738
  • Black, D. L.. 1995. Finding splice sites within a wilderness of RNA. RNA 1:763–771
  • Byth, K. F., Conroy, L. A., Howlett, S., Smith, A. J. H., May, J., Alexander, D. R., and Holmes, N.. 1996. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and in B cell maturation. J. Exp. Med. 183:1707–1718
  • Cantrell, D.. 1996. T cell antigen receptor signal transduction pathways. Annu. Rev. Immunol. 14:259–274
  • Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y.. 1982. Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol ester. J. Biol. Chem. 257:7847–7851
  • Chalfant, C. E., Watson, J. E., Bisnauth, L. D., Kang, J. B., Patel, N., Obeid, L. M., Eichler, D. C., and Cooper, D. R.. 1998. Insulin regulates protein kinase CbII expression through enhanced exon inclusion in L6 skeletal muscle cells. J. Biol. Chem. 273:910–916
  • Crabtree, G. R., and Clipstone, N. A.. 1994. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu. Rev. Biochem. 63:1045–1083
  • D'Ambrosio, D., Cantrell, D. A., Frati, L., Santoni, A., and Testi, R.. 1994. Involvement of p21ras activation in T cell CD69 expression. Eur. J. Immunol. 24:616–620
  • Deans, J. P., Serra, H. M., Shaw, J., Shen, Y. J., Torres, R. M., and Pilarski, L.. 1992. Transient accumulation and subsequent rapid loss of messenger RNA encoding high molecular mass CD45 isoforms after T cell activation. J. Immunol. 148:1898–1905
  • Desai, D. M., Sap, J., Schlessinger, J., and Weiss, A.. 1993. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 73:541–554
  • Downward, J., Graves, J. D., Warne, P. H., Rayter, S., and Cantrell, D. A.. 1990. Stimulation of p21ras upon T-cell activation. Nature 346:719–723
  • Fu, X.-D.. 1995. The superfamily of arginine/serine-rich splicing factors. RNA 1:663–680
  • Grabowski, P. J.. 1998. Splicing regulation in neurons: tinkering with cell-specific control. Cell 92:709–712
  • Hertel, K. J., Lynch, K. W., and Maniatis, T.. 1997. Common themes in the function of transcription and splicing enhancers. Curr. Opin. Cell Biol. 9:350–357
  • Katz, M. E., and McCormick, F.. 1997. Signal transduction from multiple Ras effectors. Curr. Opin. Genes Dev. 7:75–79
  • Kishihara, K., Penninger, J., Wallace, V. A., Kundig, T. M., Kawai, K., Wakenham, A., Timms, E., Pfeffer, K., Ohashi, P. S., and Thomas, M. L.. 1993. Normal B lymphocyte development but impaired T cell maturation in CD45-exon 6 protein tyrosine phosphatase-deficient mice. Cell 74:143–156
  • Konig, H., Ponta, H., and Herrlich, P.. 1998. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J. 17:2904–2913
  • Koretzky, G. A., Picus, J., Thomas, M. L., and Weiss, A.. 1990. Tyrosine phosphatase CD45 is essential for coupling T cell antigen receptor to the phosphatidylinositol pathway. Nature 346:66–68
  • Koretzky, G., Picus, J., Schultz, T., and Weiss, A.. 1991. Tyrosine phosphatase CD45 is required for both T cell antigen receptor and CD2 mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc. Natl. Acad. Sci. USA 88:2037–2041
  • Koretzky, G. A., Kohmetscher, M. A., Kadlecek, T., and Weiss, A.. 1992. Restoration of T cell receptor mediated signal transduction by transfection of CD45 cDNA into a CD45-deficient variant of the Jurkat T cell line. J. Immunol. 149:1138–1142
  • Leevers, S. J., and Marshall, C. J.. 1992. Activation of extracellular signal-regulated kinase, Erk2, by p21ras oncoprotein. EMBO J. 11:569–574
  • Leitenberg, D., Boutin, Y., Lu, D. D., and Bottomly, K.. 1999. Biochemical association of CD45 with the T cell receptor complex: regulation by Cd45 isoform and during T cell activation. Immunity 10:701–711
  • Leitenberg, D., Novak, T. J., Farber, D., Smith, B. R., and Bottomly, K.. 1996. The extracellular domain of CD45 controls association with the CD4-T cell receptor complex and the response to antigen-specific stimulation. J. Exp. Med. 183:249–259
  • Lemaire, R., Winne, A., Sarkissian, M., and Lafyatis, R.. 1999. SF2 and SRp55 regulation of CD45 exon 4 skipping during T cell activation. Eur. J. Immunol. 29:823–837
  • Lowin-Kropf, B., Shapiro, V. S., and Weiss, A.. 1998. Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J. Cell Biol. 140:861–871
  • Lui, C., Cheng, J., and Mountz, J. D.. 1995. Differential expression of human Fas mRNA species upon peripheral blood mononuclear cell activation. Biochem. J. 310:957–963
  • Majeti, R., Bilwes, A. M., Noel, J. P., Hunter, T., and Weiss, A.. 1998. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science 279:88–91
  • Manley, J. L., and Tacke, R.. 1996. SR proteins and splicing control. Genes Dev. 10:1569–1579
  • McCall, M. N., Shotton, D. M., and Barclay, A. N.. 1992. Expression of soluble isoforms of rat CD45. Analysis by electron microscopy and use in epitope mapping of anti-Cd45R monoclonal antibodies. Immunology 76:310–317
  • McFarland, E. D., Hurley, T. R., Pingel, J. T., Sefton, B. M., Shaw, A., and Thomas, M. L.. 1993. Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signaling through the T-cell receptor. Proc. Natl. Acad. Sci. USA 90:1402–1406
  • Mizushima, S., and Nagata, S.. 1990. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18: 5322
  • Ostergaard, H. L., Shackelford, D. A., Hurley, T. R., Johnson, P., Hyman, R., Sefton, B. M., and Trowbridge, I. S.. 1989. Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc. Natl. Acad. Sci. USA 86:8959–8963
  • Ostergaard, H. L., and Trowbridge, I. S.. 1990. Coclustering CD45 with CD4 and CD8 alters the phosphorylation and kinase activity of p56lck. J. Exp. Med. 172:347–350
  • Ratech, H., Denning, S., and Kaufman, R. E.. 1997. An analysis of alternatively spliced CD45 mRNA transcripts during T cell maturation in humans. Cell. Immunol. 177:109–118
  • Rothstein, D. M., Saito, H., Streuli, M., Schlossman, S. F., and Morimoto, C.. 1992. The alternative splicing of the CD45 tyrosine phosphatase is controlled by negative regulatory trans-acting splicing factors. J. Biol. Chem. 267:7139–7147
  • Rothstein, D. M., Yamada, A., Schlossman, S. F., and Morimoto, C.. 1991. Cyclic regulation of CD45 isoform expression in a long term human CD4+CD45RA+ T cell line. J. Immunol. 146:1175–1183
  • Saga, Y., Furukawa, K., Rogers, P., Tung, J. S., Parker, D., and Boyse, E. A.. 1990. Further data on the selective expression of Ly-5 isoform. Immunogenetics 31:296–306
  • Saga, Y., Lee, J. S., Saraiya, C., and Boyse, E. A.. 1990. Regulation of alternative splicing in the generation of isoforms of the mouse Ly-5 (CD45) glycoprotein. Proc. Natl. Acad. Sci. USA 87:3728–3732
  • Sarkissian, M., Winne, A., and Lafyatis, R.. 1996. The mammalian homolog of suppressor-of-white-apricot regulates alternative mRNA splicing of CD45 exon 4 and fibronectin IIICS. J. Biol. Chem. 271:31106–31114
  • Satoh, T., Nakafuku, M., and Kaziro, Y.. 1992. Function of Ras as a molecular switch in signal transduction. J. Biol. Chem. 267:24149–24152
  • Schwinzer, R., Schraven, B., Kyas, U., Meuer, S. C., and Wonigeit, K.. 1992. Phenotypical and biochemical characterization of a variant CD45R expression pattern in human leukocytes. Eur. J. Immunol. 22:1095–1098
  • Screaton, G. R., Caceres, J. F., Mayeda, A., Bell, M. V., Plebanski, M., Jackson, D. G., Bell, J. I., and Krainer, A. R.. 1995. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 14:4336–4349
  • Screaton, G. R., Xu, X. N., Olsen, A. L., Cowper, A. E., Tan, R., McMichael, A. J., and Bell, J. I.. 1997. LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 94:4615–4619
  • Seavitt, J. R., White, L. S., Murphy, K. M., Loh, D. Y., Perlmutter, R. M., and Thomas, M. L.. 1999. Expression of the p56Lck Y505F mutation in CD45-deficient mice rescues thymocyte development. Mol. Cell. Biol. 19:4200–4208
  • Shapiro, V. S., Mollenauer, M. N., Greene, W. C., and Weiss, A.. 1996. c-rel regulation of IL-2 gene expression may be mediated through activation of AP-1. J. Exp. Med. 184:1663–1669
  • Sieh, M., Bolen, J. B., and Weiss, A.. 1993. CD45 specifically modulates binding of Lck to a phosphopeptide encompassing the negative regulatory tyrosine of Lck. EMBO J. 12:315–322
  • Smith, M. A., Fanger, G. R., O'Connor, L. T., Bridle, P., and Maue, R. A.. 1997. Selective regulation of agrin mRNA induction and alternative splicing in PC12 cells by Ras-dependent actions of nerve growth factor. J. Biol. Chem. 272:15675–15681
  • Stone, J. D., Conroy, L. A., Byth, K. F., Hederer, R. A., Howlett, S., Takemoto, Y., Holmes, N., and Alexander, D. R.. 1997. Aberrant TCR-mediated signaling in CD45-null thymocytes involves dysfunctional regulation of Lck, Fyn, TCR-ζ, and ZAP-70. J. Immunol. 158:5773–5782
  • Streuli, M., Hall, L. R., Saga, Y., Schlossman, S. F., and Saito, H.. 1987. Differential usage of three exons generates at least five different mRNAs encoding human leukocyte common antigens. J. Exp. Med. 166:1548–1566
  • Streuli, M., and Saito, H.. 1989. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA. EMBO J. 8:787–796
  • Strober, W., Kanof, M. E., and Smith, P. D.. Preparation of human mononuclear cell populations and subpopulations Current protocols in immunology Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. M., and Strober, W. 1:7.1.1–7.4.5 Greene Publishing Associates and Wiley-Interscience, New York, N.Y
  • Thude, H., Hundrieser, J., Wonigeit, K., and Schwinzer, R.. 1995. 1991. A point mutation in the human CD45 gene associated with defective splicing of exon A. Eur. J. Immunol. 25:2101–2106
  • Trowbridge, I. S.. 1991. CD45: a prototype for transmembrane protein tyrosine phosphatases. J. Biol. Chem. 266:23517–23520
  • Trowbridge, I. S., and Thomas, M. L.. 1994. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12:85–116
  • Tsai, A. Y. M., Streuli, M., and Saito, H.. 1989. Integrity of the exon 6 sequence is essential for tissue-specific alternative splicing of human leukocyte common antigen pre-mRNA. Mol. Cell. Biol. 9:4550–4555
  • Wang, J., and Manley, J. L.. 1997. Regulation of pre-mRNA splicing in metazoa. Curr. Opin. Genet. Dev. 7:205–211
  • Wang, J., Shen, L., Najafi, H., Kolberg, J., Matschinsky, F. M., Urdea, M., and German, M.. 1997. Regulation of insulin preRNA splicing by glucose. Proc. Natl. Acad. Sci. USA 94:4360–4365
  • Weiss, A., and Littman, D. R.. 1994. Signal transduction by lymphocyte antigen receptors. Cell 76:263–274
  • Wiskocil, R., Weiss, A., Imboden, J., Kamin-Lewis, R., and Stobo, J.. 1985. Activation of a human T cell line: a two-stimulus requirement in the pretranslational events involved in the coordinate expression of interleukin 2 and gamma-interferon genes. J. Immunol. 134:1599–1603
  • Wu, J., Katzav, S., and Weiss, A.. 1995. A functional T-cell receptor signaling pathway is required for p95vav activity. Mol. Cell. Biol. 15:4337–4346
  • Xie, J., and McCobb, D. P.. 1998. Control of alternative splicing of potassium channels by stress hormones. Science 280:443–446
  • Yablonski, D., Kane, L. P., Qian, D., and Weiss, A.. 1998. A Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J. 17:5647–5657
  • Yamada, A., Streuli, M., Saito, H., Rothstein, D. M., Schlossman, S. F., and Morimoto, C.. 1990. Effect of activation of protein kinase C on CD45 isoform expression and CD45 protein tyrosine phosphatase activity in T cells. Eur. J. Immunol. 20:1655–1660
  • Zilch, C. F., Walker, A. M., Timon, M., Goff, L. K., Wallace, D. L., and Beverley, P. C. L.. 1998. A point mutation within CD45 exon A is the cause of variant CD45RA splicing in humans. Eur. J. Immunol. 28:22–29

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.