79
Views
240
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Granzyme B Short-Circuits the Need for Caspase 8 Activity during Granule-Mediated Cytotoxic T-Lymphocyte Killing by Directly Cleaving Bid

, , , , , & show all
Pages 3781-3794 | Received 07 Jul 1999, Accepted 22 Feb 2000, Published online: 28 Mar 2023

REFERENCES

  • Atkinson, E. A., Barry, M., Darmon, A. J., Shostak, I., Turner, P. C., Moyer, R. W., and Bleackley, R. C.. 1998. Cytotoxic T lymphocyte-assisted suicide. J. Biol. Chem. 273:21261–21266
  • Atkinson, E. A., and Bleackley, R. C.. 1995. Mechanisms of lysis by cytotoxic T cells. Crit. Rev. Immunol. 15:359–384
  • Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D.. 1996. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1 and TNF receptor-induced cell death. Cell 85:803–815
  • Caputo, A., James, M. N. G., Powers, J. C., Hudig, D., and Bleackley, R. C.. 1994. Conversion of the substrate specificity of mouse proteinase granzyme B. Nat. Struct. Biol. 1:364–367
  • Caputo, A., Parrish, J. C., James, M. N. G., Powers, J. C., and Bleackley, R. C.. 1999. Electrostatic reversal of serine proteinase substrate specificity. Proteins 35:415–424
  • Chinnaiyan, A. M., Orth, K., Hanna, W. L., Duan, H. J., Poirier, G. G., Froelich, C. J., and Dixit, V. M.. 1996. Cytotoxic T cell-derived granzyme B activates the apoptotic protease ICE-LAP-3. Curr. Biol. 6:897–899
  • Chinnaiyan, A. M., Orth, K., O'Rourke, K., Duan, H., Poirier, G. G., and Dixit, V. M.. 1996. Molecular ordering of the cell death pathway. Bcl-2 and Bcl-XL function upstream of the Ced-3 like apoptotic proteases. J. Biol. Chem. 271:4573–4576
  • Cohen, G. M.. 1997. Caspases: the executioners of apoptosis. Biochem. J. 326:1–16
  • Darmon, A. J., Nicholson, D. W., and Bleackley, R. C.. 1995. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377:446–448
  • Darmon, A. J., Pinkoski, M. J., and Bleackley, R. C.. 1999. Granule-mediated cytotoxicity Apoptosis: biology and mechanisms. Kumar, S. 103–125 Springer-Verlag, Berlin, Germany
  • Dbaibo, G. S., and Hannun, Y. A.. 1998. Cytokine response modifier A (crmA): a strategically deployed viral weapon. Clin. Immunol. Immunopathol. 86:134–140
  • Dobbelstein, M., and Shenk, T.. 1996. Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product. J. Virol. 70:6479–6485
  • Duan, H., Orth, K., Chinnaiyan, A. M., Poirier, G. G., Froelich, C. J., He, W., and Dixit, V. M.. 1996. ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. J. Biol. Chem. 271:16720–16724
  • Fernandes-Alnemri, T., Armstrong, R. C., Krebs, J., Srinivasula, S. M., Wang, L., Bullrich, F., Fritz, L. C., Trapani, J. A., Tomaselli, K. J., Litwack, G., and Alnemri, E. S.. 1996. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl. Acad. Sci. USA 93:7464–7469
  • Fernandes-Alnemri, T., Takahashi, A., Armstrong, R., Krebs, J., Fritz, L., Tomaselli, K. J., Wang, L., Yu, Z., Croce, C. M., Earnshaw, W. C., Litwack, G., and Alnemri, E. S.. 1995. Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res. 55:6045–6052
  • Froelich, C. J., Orth, K., Turbov, J., Seth, P., Gottlieb, R., Babior, B., Shah, G. M., Bleackley, R. C., Dixit, V. M., and Hanna, W.. 1996. New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J. Biol. Chem. 271:29073–29079
  • Garcia-Calvo, M., Peterson, E. P., Leiting, B., Ruel, R., Nicholson, D. W., and Thornberry, N. A.. 1998. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem. 273:32608–32613
  • Garner, R., Helgason, C. D., Atkinson, E. A., Pinkoski, M. J., Ostergaard, H. L., Sorensen, O., Fu, A., Lapchak, P. H., Rabinovitch, A., McElhaney, J. E., Berke, G., and Bleackley, R. C.. 1994. Characterization of a granule-independent lytic mechanism used by CTL hybridomas. J. Immunol. 153:5413–5421
  • Gavriell, Y., Sherman, Y., and Ben-Sasson, S. A.. 1992. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119:493–501
  • Griffiths, G. M., and Argon, Y.. 1995. Structure and biogenesis of lytic granules Pathways for cytolysis. Griffiths, G. M., and Tschopp, J. 39–58 Springer-Verlag, Berlin, Germany
  • Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., and Korsmeyer, S. J.. 1999. Caspase cleaved Bid targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274:1156–1163
  • Gu, Y., Sarnecki, C., Fleming, M. A., Lippke, J. A., Bleackley, R. C., and Su, M. S. S.. 1996. Processing and activation of CMH-1 by granzyme B. J. Biol. Chem. 271:10816–10820
  • Hanna, W. L., Zhang, X., Turbov, J., Winkler, U., Hudig, D., and Froelich, C. J.. 1993. Rapid purification of cationic granule proteases: application to human granzymes. Protein Exp. Purif. 4:398–404
  • Heibein, J. A., Barry, M., Motyka, B., and Bleackley, R. C.. 1999. Granzyme B-induced loss of mitochondrial inner membrane potential (ΔΨm) and cytochrome c release are caspase-independent. J. Immunol. 163:4683–4693
  • Heinkelein, M., Pilz, S., and Jassoy, C.. 1996. Inhibition of CD95 (Fas/APO-1)-mediated apoptosis by vaccinia virus WR. Clin. Exp. Immunol. 102:8–14
  • Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H., and Ley, T. J.. 1994. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76:977–987
  • Heytler, P. G., and Pritchard, W. W.. 1962. A new class of uncoupling agents—carbonyl cyanide phenylhydrazones. Biochem. Biophys. Res. Commun. 7: 272
  • Honglin, L., Zhu, H., Xu, C., and Juan, Y.. 1998. Cleavage of Bid by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501
  • Janicke, R. U., Ng, P., Sprengart, M. L., and Porter, A. G.. 1998. Caspase-3 is required for α-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem. 273:15540–15545
  • Janicke, R. U., Sprengart, M. L., Wati, M. R., and Porter, A. G.. 1998. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273:9357–9360
  • Karasuyama, H., and Melchers, F.. 1988. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4, or 5, using modified cDNA expression vectors. Eur. J. Immunol. 18:97–104
  • Kataoka, T., Schroter, M., Hahne, M., Schneider, P., Irmler, M., Thome, M., Froelich, C. J., and Tschopp, J.. 1998. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J. Immunol. 161:3936–3942
  • Kettle, S., Alcami, A., Khanna, A., Ehret, R., Jassoy, C., and Smith, G. L.. 1997. Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1β-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1β-induced fever. J. Gen. Virol. 78:677–685
  • Komiyama, T., Ray, C. A., Pickup, D. J., Howard, A. D., Thornberry, N. A., Peterson, E. P., and Salvesen, G.. 1994. Inhibition of interleukin-1β converting enzyme by cowpox virus serpin crmA. J. Biol. Chem. 269:19331–19337
  • Koopman, G., Reutelingsperger, C. P. M., Kuijten, G. A. M., Keehnen, R. M. J., Pals, S. T., and van Oers, M. H. J.. 1994. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420
  • Kroemer, G., Zamzami, N., and Susin, S. A.. 1997. Mitochondrial control of apoptosis. Immunol. Today 18:44–51
  • Kuwana, T., Smith, J. J., Muzio, M., Dixit, V., Newmeyer, D. D., and Kornbluth, S.. 1998. Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J. Biol. Chem. 273:16589–16594
  • Li, F., Srinivasan, A., Wang, Y., Armstrong, R. C., Tomaselli, K. J., and Fritz, L. C.. 1997. Cell-specific induction of apoptosis by microinjection of cytochrome c. J. Biol. Chem. 272:30299–30305
  • Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X.. 1996. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157
  • Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X.. 1998. Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490
  • Macen, J. L., Garner, R. S., Musy, P. Y., Brooks, M. A., Turner, P. C., Moyer, R. W., McFadden, G., and Bleackley, R. C.. 1996. Differential inhibition of the Fas-mediated and granule-mediated cytolysis pathways by the orthopoxvirus cytokine response modifier A/SPI-2 and SPI-1 protein. Proc. Natl. Acad. Sci. USA 93:9108–9113
  • Macen, J., Takahashi, A., Moon, K. B., Nathaniel, R., Turner, P. C., and Moyer, R. W.. 1998. Activation of caspases in pig kidney cells infected with wild-type CrmA/SPI-2 mutants of cowpox and rabbitpox viruses. J. Virol. 72:3524–3533
  • Mancini, M., Nicholson, D. W., Roy, S., Thornberry, N. A., Peterson, E. P., Casciola-Rosen, L. A., and Rosen, A.. 1998. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J. Cell Biol. 140:1485–1495
  • Martin, S. J., Reutelingsperberg, C. P., McGahon, A. J., Rader, J., van Schie, R. C. A. A., LaFace, D. M., and Green, D. R.. 1995. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182:1545–1556
  • McDonald, G., Shi, L., Vande Velde, C., Lieberman, J., and Greenberg, A. H.. 1999. Mitochondria-dependent and -independent regulation of granzyme B-induced apoptosis. J. Exp. Med. 189:131–143
  • McFadden, G., and Barry, M.. 1998. How poxviruses oppose apoptosis. Semin. Virol. 8:429–442
  • Medema, J. P., Scaffidi, C., Kischkel, F. C., Shevchenko, A., Mann, M., Krammer, P. H., and Peter, M. E.. 1997. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16:2794–2804
  • Medema, J. P., Toes, R. E. M., Scaffidi, C., Zheng, T. S., Flavell, R. A., Melief, C. J. M., Pete, M. E., Offringa, R., and Krammer, P. H.. 1997. Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur. J. Immunol. 27:3492–3498
  • Meinl, E., Fickenscher, H., Thome, M., Tschopp, J., and Fleckenstein, B.. 1998. Anti-apoptotic strategies of lymphotropic viruses. Immunol. Today 19:474–479
  • Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., and Dixit, V. M.. 1996. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex (DISC). Cell 85:817–827
  • Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S., and Dixit, V. M.. 1998. An induced proximity model for caspase-8 activation. J. Biol. Chem. 273:2926–2930
  • Nicholson, D. W., and Thornberry, N. A.. 1997. Caspases: killer proteases. Trends Biochem. Sci. 22:299–306
  • Odake, L. M., Kam, C. M., Narasimhan, L., Poe, M., Blake, J. T., Krahenbuhl, O., Tschopp, J., and Powers, J. C.. 1991. Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry 30:2217–2227
  • Peter, M. E., and Krammer, P. H.. 1998. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr. Opin. Immunol. 10:545–551
  • Poe, M., Blake, J. T., Boulton, D. A., Gammon, M., Sigal, N. H., Wu, J. K., and Zweerink, H. J.. 1991. Human cytotoxic lymphocyte granzyme B. Its purification from granules and the characterization of substrate and inhibitor specificity. J. Biol. Chem. 266:98–103
  • Quan, L. T., Caputo, A., Bleackley, R. C., Pickup, D. J., and Salvesen, G. S.. 1995. Granzyme B is inhibited by the cowpox virus serpin cytokine response modifier A. J. Biol. Chem. 270:10377–10379
  • Quan, L. T., Tewari, T. M., O'Rourke, K., Dixit, V., Snipas, S. J., Poirier, G. G., Ray, C., Pickup, D. J., and Salvesen, G. S.. 1996. Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B. Proc. Natl. Acad. Sci. USA 93:1972–1976
  • Rasper, D. M., Vaillancourt, J. P., Hadano, S., Houtzager, V. M., Seiden, I., Keen, S. L. C., Tawa, P., Xanthoudakis, S., Nasir, J., Martindale, D., Koop, B. F., Petersen, E. P., Thornberry, N. A., Huang, J., MacPherson, D. P., Black, S. C., Hornung, F., Lenardo, M. J., Hayden, M. R., Roy, S., and Nicholson, D. W.. 1998. Cell death attenuation by ‘Usurpin’, a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Diff. 5:271–288
  • Sakahira, H., Enari, M., and Nagata, S.. 1998. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99
  • Sarin, A., Williams, M. S., Alexander-Miller, M. A., Berzofsky, J. A., Zacharchuk, C. M., and Henkart, P. A.. 1997. Target cell lysis by CTL granule exocytosis is independent of ICE/Ced-3 family proteases. Immunity 6:209–215
  • Savill, J., Fadok, V., Henson, P., and Haslett, C.. 1993. Phagocyte recognition of cells undergoing apoptosis. Immunol. Today 14:131–136
  • Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E.. 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17:1675–1687
  • Schlegel, J., Peters, I., Orrenius, S., Miller, D. K., Thornberry, N. A., Yamin, T.-T., and Nicholson, D. W.. 1995. CPP32/apopain is a key interleukin-1β converting enzyme-like protease involved in Fas-mediated apoptosis. J. Biol. Chem. 271:1841–1844
  • Shi, L. F., Chen, G., MacDonald, G., Bergeron, L., Li, H. L., Miura, M., Rotello, R. J., Miller, D. K., Li, P., Seshadri, T., Yuan, J. Y., and Greenberg, A. H.. 1996. Activation of an interleukin 1 converting enzyme-dependent apoptosis pathway by granzyme B. Proc. Natl. Acad. Sci. USA 93:11002–11007
  • Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B., Casiano, C. A., Newmeyer, D. D., Wang, H.-G., Reed, J. C., Nicholson, D. W., Alnemri, E. S., Green, D. R., and Martin, S. J.. 1999. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol. 144:281–292
  • Smyth, M. J., O'Connor, M. D., and Trapani, J. A.. 1996. Granzymes: a variety of serine protease specificities encoded by genetically distinct subfamilies. J. Leukoc. Biol. 60:555–562
  • Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S.. 1996. Molecular ordering of the Fas pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl. Acad. Sci. USA 93:14486–14491
  • Stennicke, H. R., Jurgensmeier, J. M., Shin, H., Deveraux, Q., Wolf, B. B., Yang, X., Zhou, Q., Ellerby, H. M., Ellerby, L. M., Bradesen, D., Green, D. R., Reed, J. C., Froelich, C. J., and Salvesen, G. S.. 1998. Pro-caspase 3 is a major physiologic target of caspase-8. J. Biol. Chem. 273:27084–27090
  • Stroh, C., and Schulze-Osthoff, K.. 1998. Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Diff. 5:997–1000
  • Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost, M. C., Alzari, P. M., and Kroemer, G.. 1999. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J. Exp. Med. 189:381–393
  • Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G.. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446
  • Susin, S. A., Zamzami, N., Castedo, M., Daugas, E., Wang, H. G., Geley, S., Fassy, F., Reed, J. C., and Kroemer, G.. 1997. The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J. Exp. Med. 186:25–37
  • Susin, S. A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M., and Kroemer, G.. 1996. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J. Exp. Med. 184:1331–1342
  • Talanian, R. V., Yang, X., Turbov, J., Seth, P., Ghayur, T., Casiano, C. A., Orth, K., and Froelich, C. J.. 1997. Granule-mediated killing: pathways for granzyme B-initiated apoptosis. J. Exp. Med. 186:1323–1331
  • Tang, D., and Kidd, V. J.. 1998. Cleavage of DFF-45/ICAD by multiple caspases is essential for its function during apoptosis. J. Biol. Chem. 273:28549–28552
  • Tewari, M., Telford, W. G., Miller, R. A., and Dixit, V. M.. 1995. CrmA, a poxvirus-encoded serpin, inhibits cytotoxic T-lymphocyte-mediated apoptosis. J. Biol. Chem. 270:22705–22708
  • Thornberry, N. A., Rano, T. A., Peterson, E. P., Rasper, D. M., Timkey, T., Garcia-Calvo, M., Houtzager, V. M., Nordstrom, P. A., Roy, S., Vaillancourt, J. P., Chapman, K. T., and Nicholson, D. W.. 1997. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272:17907–17911
  • Van de Craen, M., Van den Brande, I., Declercq, W., Irmler, M., Beyaert, R., Tschopp, J., Fiers, W., and Vandenabeele, P.. 1997. Cleavage of caspase family members by granzyme B: a comparative study in vitro. Eur. J. Immunol. 27:1296–1299
  • Van de Craen, M., Van Loo, G., Declercq, W., Schotte, P., Van den Brande, I., Mandruzzato, S., van der Bruggen, P., Fiers, W., and Vandenabeele, P.. 1998. Molecular cloning and identification of murine caspase 8. J. Mol. Biol. 284:1017–1026
  • Yang, X., Chang, H. Y., and Baltimore, D.. 1998. Autoproteolytic activation of procaspases by oligomerization. Mol. Cell 1:319–325
  • Yang, X., Stennicke, H. R., Wang, B., Green, D. R., Janicke, R. U., Srinivasan, A., Seth, P., Salvesen, G. S., and Froelich, C. J.. 1998. Granzyme B mimics apical caspases. Description of a unified pathway for trans-activation of executioner caspase-3 and -7. J. Biol. Chem. 273:34278–34283
  • Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zhao, Y., Zinkel, S., Klocke, B., Roth, K. A., and Korsmeyer, S. J.. 1999. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:886–891
  • Zhou, Q., Snipas, S., Orth, K., Muzio, M., Dixit, V. M., and Salvesen, G. S.. 1997. Target protease specificity of the viral serpin CrmA. J. Biol. Chem. 272:7797–7800

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.