33
Views
101
CrossRef citations to date
0
Altmetric
Gene Expression

Aberrant Splicing of tau Pre-mRNA Caused by Intronic Mutations Associated with the Inherited Dementia Frontotemporal Dementia with Parkinsonism Linked to Chromosome 17

, , , &
Pages 4036-4048 | Received 04 Nov 1999, Accepted 01 Mar 2000, Published online: 28 Mar 2023

REFERENCES

  • Andreadis, A., Brown, W. M., and Kosik, K. S.. 1992. Structure and novel exons of the human tau gene. Biochemistry 31:10626–10633
  • Black, D. L.. 1995. Finding splice sites within a wilderness of RNA. RNA 1:763–771
  • Black, D. L., Chabot, B., and Steitz, J. A.. 1985. U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell 42:737–750
  • Blanchette, M., and Chabot, B.. 1997. A highly stable duplex structure sequesters the 5′ splice site region of hnRNP A1 alternative exon 7B. RNA 3:405–419
  • Chabot, B.. Synthesis and purification of RNA substrates RNA processing Hames, D., and Higgins, S. I:1–29 Oxford University Press, Oxford, United Kingdom
  • Clark, L. N., Poorkaj, P., Wszolek, Z., Geschwind, D. H., Nasreddine, Z. S., Miller, B., Li, D., Payami, H., Awert, F., Markopoulou, K., Andreadis, A., D'Souza, I., Lee, V. M., Reed, L., Trojanowski, J. Q., Zhukareva, V., Bird, T., Schellenberg, G., and Wilhelmsen, K. C.. 1998. 1994. Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc. Natl. Acad. Sci. USA 95:13103–13107
  • Côté, J., and Chabot, B.. 1997. Natural base-pairing interactions between 5′ splice site and branch site sequences affect mammalian 5′ splice site selection. RNA 3:1248–1261
  • Dignam, J. D., Lebovitz, R. M., and Roeder, R. G.. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489
  • D'Souza, I., Poorkaj, P., Hong, M., Nochlin, D., Lee, V. M., Bird, T. D., and Schellenberg, G. D.. 1999. Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc. Natl. Acad. Sci. USA 96:5598–5603
  • Eng, F. J., and Warner, J. R.. 1991. Structural basis for the regulation of splicing of a yeast messenger RNA. Cell 65:797–804
  • Eperon, I. C., Ireland, D. C., Smith, R. A., Mayeda, A., and Krainer, A. R.. 1993. Pathways for selection of 5′ splice sites by U1 snRNPs and SF2/ASF. EMBO J. 12:3607–3617
  • Eperon, L. P., Estibeiro, J. P., and Eperon, I. C.. 1986. The role of nucleotide sequences in splice site selection in eukaryotic pre-messenger RNA. Nature 324:280–282
  • Eperon, L. P., Graham, I. R., Griffiths, A. D., and Eperon, I. C.. 1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54:393–401
  • Foster, N. L., Wilhelmsen, K., Sima, A. A., Jones, M. Z., D'Amato, C. J., and Gilman, S.. 1997. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann. Neurol. 41:706–715
  • Goedert, M.. 1998. Neurofibrillary pathology of Alzheimer's disease and other tauopathies. Prog. Brain Res. 117:287–306
  • Goedert, M., Crowther, R. A., and Spillantini, M. G.. 1998. Tau mutations cause frontotemporal dementias. Neuron 21:955–958
  • Goedert, M., Spillantini, M. G., and Crowther, R. A.. 1991. Tau proteins and neurofibrillary degeneration. Brain Pathol. 1:279–286
  • Goedert, M., Spillantini, M. G., and Davies, S. W.. 1998. Filamentous nerve cell inclusions in neurodegenerative diseases. Curr. Opin. Neurobiol. 8:619–632
  • Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D., and Crowther, R. A.. 1989. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3:519–526
  • Goguel, V., Liao, X. L., Rymond, B. C., and Rosbash, M.. 1991. U1 snRNP can influence 3′-splice site selection as well as 5′-splice site selection. Genes Dev. 5:1430–1438
  • Goguel, V., and Rosbash, M.. 1993. Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast. Cell 72:893–901
  • Goguel, V., Wang, Y., and Rosbash, M.. 1993. Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing. Mol. Cell. Biol. 13:6841–6848
  • Grover, A., Houlden, H., Baker, M., Adamson, J., Lewis, J., Prihar, G., Pickering-Brown, S., Duff, K., and Hutton, M.. 1999. 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J. Biol. Chem. 274:15134–15143
  • Hasegawa, M., Smith, M. J., and Goedert, M.. 1998. Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett. 437:207–210
  • Hasegawa, M., Smith, M. J., Iijima, M., Tabira, T., and Goedert, M.. 1999. FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett. 443:93–96
  • Hirokawa, N.. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526
  • Hirokawa, N.. 1994. Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr. Opin. Cell Biol. 6:74–81
  • Hodges, D., and Bernstein, S. I.. 1994. Genetic and biochemical analysis of alternative RNA splicing. Adv. Genet. 31:207–281
  • Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V., Wszolek, Z., Reed, L., Miller, B. I., Geschwind, D. H., Bird, T. D., McKeel, D., Goate, A., Morris, J. C., Wilhelmsen, K. C., Schellenberg, G. D., Trojanowski, J. Q., and Lee, V. M.. 1998. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917
  • Hutton, M., Lendon, C. L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Pickering-Brown, S., Chakraverty, S., Isaacs, A., Grover, A., Hackett, J., Adamson, J., Lincoln, S., Dickson, D., Davies, P., Petersen, R. C., Stevens, M., de Graaff, E., Wauters, E., van Baren, J., Hillebrand, M., Joosse, M., Kwon, J. M., Nowotny, P., Heutink, P. et al. 1998. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705
  • Iijima, M., Tabira, T., Poorkaj, P., Schellenberg, G. D., Trojanowski, J. Q., Lee, V. M., Schmidt, M. L., Takahashi, K., Nabika, T., Matsumoto, T., Yamashita, Y., Yoshioka, S., and Ishino, H.. 1999. A distinct familial presenile dementia with a novel missense mutation in the tau gene. Neuroreport 10:497–501
  • Ishihara, T., Hong, M., Zhang, B., Nakagawa, Y., Lee, M. K., Trojanowski, J. Q., and Lee, V. M.. 1999. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24:751–762
  • Jiang, Z., Zhang, W., Rao, Y., and Wu, J. Y.. 1998. Regulation of Ich-1 pre-mRNA alternative splicing and apoptosis by mammalian splicing factors. Proc. Natl. Acad. Sci. USA 95:9155–9160
  • Kohtz, J. D., Jamison, S. F., Will, C. L., Zuo, P., Luhrmann, R., Garcia-Blanco, M. A., and Manley, J. L.. 1994. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368:119–124
  • Kosik, K. S.. 1990. Tau protein and neurodegeneration. Mol. Neurobiol. 4:171–179
  • Kramer, A.. 1996. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65:367–409
  • Kramer, A., Frick, M., and Keller, W.. 1987. Separation of multiple components of HeLa cell nuclear extracts required for pre-messenger RNA splicing. J. Biol. Chem. 262:17630–17640
  • Kramer, A., and Keller, W.. 1990. Preparation and fractionation of mammalian extracts active in pre-mRNA splicing. Methods Enzymol. 181:3–19
  • Kuo, H. C., Nasim, F. H., and Grabowski, P. J.. 1991. Control of alternative splicing by the differential binding of U1 small nuclear ribonucleoprotein particle. Science 251:1045–1050
  • Lee, G., Neve, R. L., and Kosik, K. S.. 1989. The microtubule binding domain of tau protein. Neuron 2:1615–1624
  • Lee, V. M., and Trojanowski, J. Q.. 1992. The disordered neuronal cytoskeleton in Alzheimer's disease. Curr. Opin. Neurobiol. 2:653–656
  • Lin, C. L., Bristol, L. A., Jin, L., Dykes-Hoberg, M., Crawford, T., Clawson, L., and Rothstein, J. D.. 1998. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20:589–602
  • Mandelkow, E., and Mandelkow, E. M.. 1995. Microtubules and microtubule-associated proteins. Curr. Opin. Cell Biol. 7:72–81
  • Mandelkow, E. M., Biernat, J., Drewes, G., Gustke, N., Trinczek, B., and Mandelkow, E.. 1995. Tau domains, phosphorylation, and interactions with microtubules. Neurobiol. Aging 16:355–363
  • Mayeda, A., and Krainer, A. R.. Mammalian in vitro splicing assays. 1997 Methods Mol. Biol.
  • Moore, M. J., Query, C. C., and Sharp, P. A.. 1993. Splicing of precursors to messenger RNAs by the spliceosome RNA world. Gesteland, R., and Atkins, J. 1–30 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Mount, S. M.. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10:459–472
  • Nakai, K., and Sakamoto, H.. 1994. Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene 141:171–177
  • Nandabalan, K., Price, L., and Roeder, G. S.. 1993. Mutations in U1 snRNA bypass the requirement for a cell type-specific RNA splicing factor. Cell 73:407–415
  • Poorkaj, P., Bird, T. D., Wijsman, E., Nemens, E., Garruto, R. M., Anderson, L., Andreadis, A., Wiederholt, W. C., Raskind, M., and Schellenberg, G. D.. 1998. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann. Neurol. 43:815–825 (Erratum, 44:428.)
  • Puig, O., Gottschalk, A., Fabrizio, P., and Seraphin, B.. 1999. Interaction of the U1 snRNP with nonconserved intronic sequences affects 5′ splice site selection. Genes Dev. 13:581–592
  • Reed, R.. 1996. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr. Opin. Genet. Dev. 6:215–220
  • Reyes, J. L., Gustafson, E. H., Luo, H. R., Moore, M. J., and Konarska, M. M.. 1999. The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5′ splice site. RNA 5:206–220
  • Reyes, J. L., Kois, P., Konforti, B. B., and Konarska, M. M.. 1996. The canonical GU dinucleotide at the 5′ splice site is recognized by p220 of the U5 snRNP within the spliceosome. RNA 2:213–225
  • Seiwert, S. D., and Steitz, J. A.. 1993. Uncoupling two functions of the U1 small nuclear ribonucleoprotein particle during in vitro splicing. Mol. Cell. Biol. 13:3134–3145
  • Senapathy, P., Shapiro, M. B., and Harris, N. L.. 1990. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. 183:252–278
  • Sirand-Pugnet, P., Durosay, P., Brody, E., and Marie, J.. 1995. An intronic (A/U)GGG repeat enhances the splicing of an alternative intron of the chicken beta-tropomyosin pre-mRNA. Nucleic Acids Res. 23:3501–3507
  • Sirand-Pugnet, P., Durosay, P., Clouet, O., Brody, E., and Marie, J.. 1995. beta-Tropomyosin pre-mRNA folding around a muscle-specific exon interferes with several steps of spliceosome assembly. J. Mol. Biol. 251:591–602
  • Solnick, D.. 1985. Alternative splicing caused by RNA secondary structure. Cell 43:667–676
  • Solnick, D., and Lee, S. I.. 1987. Amount of RNA secondary structure required to induce an alternative splice. Mol. Cell. Biol. 7:3194–3198
  • Spillantini, M. G., and Goedert, M.. 1998. Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21:428–433
  • Spillantini, M. G., Goedert, M., Crowther, R. A., Murrell, J. R., Farlow, M. R., and Ghetti, B.. 1997. Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc. Natl. Acad. Sci. USA 94:4113–4118
  • Spillantini, M. G., Murrell, J. R., Goedert, M., Farlow, M. R., Klug, A., and Ghetti, B.. 1998. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl. Acad. Sci. USA 95:7737–7741
  • Teigelkamp, S., Newman, A. J., and Beggs, J. D.. 1995. Extensive interactions of PRP8 protein with the 5′ and 3′ splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. EMBO J. 14:2602–2612
  • Varani, L., Hasegawa, M., Spillantini, M. G., Smith, M. J., Murrell, J. R., Ghetti, B., Klug, A., Goedert, M., and Varani, G.. 1999. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl. Acad. Sci. USA 96:8229–8234
  • Vilardell, J., and Warner, J. R.. 1994. Regulation of splicing at an intermediate step in the formation of the spliceosome. Genes Dev. 8:211–220
  • Wu, J. Y., and Maniatis, T.. 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75:1061–1070
  • Zhang, W. J., and Wu, J. Y.. 1996. Functional properties of p54, a novel SR protein active in constitutive and alternative splicing. Mol. Cell. Biol. 16:5400–5408
  • Zuo, P., and Manley, J. L.. 1994. The human splicing factor ASF/SF2 can specifically recognize pre-mRNA 5′ splice sites. Proc. Natl. Acad. Sci. USA 91:3363–3367

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.