22
Views
94
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Disruption of Mouse SNM1 Causes Increased Sensitivity to the DNA Interstrand Cross-Linking Agent Mitomycin C

, , , , , , & show all
Pages 4553-4561 | Received 20 Dec 1999, Accepted 05 Apr 2000, Published online: 28 Mar 2023

REFERENCES

  • Alaoui-Jamali, M., Loubaba, B. B., Robyn, S., Tapiero, H., and Batist, G.. 1994. Effect of DNA-repair-enzyme modulators on cytotoxicity of l-phenylalanine mustard and cis-diamminedichloroplatinum (II) in mammary carcinoma cells resistant to alkylating drugs. Cancer Chemother. Pharmacol. 34:153–158
  • Averbeck, D., Dardalhon, M., Magana-Schwencke, N., Meira, L. B., Meniel, V., Boiteux, S., and Sage, E.. 1992. New aspects of the repair and genotoxicity of psoralen photoinduced lesions in DNA. J. Photochem. Photobiol. B 14:47–63
  • Bishop, D. K., Ear, U., Bhattacharyya, A., Calderone, C., Beckett, M., Weichselbaum, R. R., and Shinohara, A.. 1998. Xrcc3 is required for assembly of Rad51 complexes in vivo. J. Biol. Chem. 273:21482–21488
  • Bockmuhl, U., Petersen, S., Schmidt, S., Wolf, G., Jahnke, V., Dietel, M., and Petersen, I.. 1997. Patterns of chromosomal alterations in metastasizing and nonmetastasizing primary head and neck carcinomas. Cancer Res. 57:5213–5216
  • Bramson, J., McQuillan, A., Aubin, R., Alaoui-Jamali, M., Batist, G., Christodoulopoulos, G., and Panasci, L. C.. 1995. Nitrogen mustard drug resistant B-cell chronic lymphocytic leukemia as an in vivo model for crosslinking agent resistance. Mutat. Res. 336:269–278
  • Brendel, M., and Ruhland, A.. 1984. Relationships between functionality and genetic toxicology of selected DNA-damaging agents. Mutat. Res. 133:51–85
  • Buchwald, M., and Moustacchi, E.. 1998. Is Fanconi anemia caused by a defect in the processing of DNA damage? Mutat. Res. 408:75–90
  • Carreau, M., Gan, O. I., Liu, L., Doedens, M., McKerlie, C., Dick, J. E., and Buchwald, M.. 1998. Bone marrow failure in the Fanconi anemia group C mouse model after DNA damage. Blood 91:2737–2744
  • Cassier-Chauvat, C., and Moustacchi, E.. 1988. Allelism between pso1-1 and rev3-1 mutants and between pso2-1 and snm1 mutants in Saccharomyces cerevisiae. Curr. Genet. 13:37–40
  • Chen, M., Tomkins, D. J., Auerbach, W., McKerlie, C., Youssoufian, H., Liu, L., Gan, O., Carreau, M., Auerbach, A., Groves, T., Guidos, C. J., Freedman, M. H., Cross, J., Percy, D. H., Dick, J. E., Joyner, A. L., and Buchwald, M.. 1996. Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nat. Genet. 12:448–451
  • Collins, A. R.. 1993. Mutant rodent cell lines sensitive to ultraviolet light, ionizing radiation and cross-linking agents: a comprehensive survey of genetic and biochemical characteristics. Mutat. Res. 293:99–118
  • Cui, X., Brenneman, M., Meyne, J., Oshimura, M., Goodwin, E. H., and Chen, D. J.. 1999. The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells. Mutat. Res. 434:75–88
  • Dardalhon, M., and Averbeck, D.. 1995. Pulsed-field gel electrophoresis analysis of the repair of psoralen plus UVA induced DNA photoadducts in Saccharomyces cerevisiae. Mutat. Res. 336:49–60
  • de Boer, J., and Hoeijmakers, J. H.. 1999. Cancer from the outside, aging from the inside: mouse models to study the consequences of defective nucleotide excision repair. Biochimie 81:127–137
  • de Winter, J. P., Waisfisz, Q., Rooimans, M. A., van Berkel, C. G., Bosnoyan-Collins, L., Alon, N., Carreau, M., Bender, O., Demuth, I., Schindler, D., Pronk, J. C., Arwert, F., Hoehn, H., Digweed, M., Buchwald, M., and Joenje, H.. 1998. The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nat. Genet. 20:281–283
  • Digweed, M., and Sperling, K.. 1996. Molecular analysis of Fanconi anaemia. Bioessays 18:579–585
  • Essers, J., Hendriks, R. W., Swagemakers, S. M. A., Troelstra, C., de Wit, J., Bootsma, D., Hoeijmakers, J. H. J., and Kanaar, R.. 1997. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89:195–204
  • Essers, J., van Steeg, H., de Wit, J., Swagemakers, S. M. A., Vermeij, M., Hoeijmakers, J. H. J., and Kanaar, R.. 2000. Homologous and non-homologous recombination differentially affect DNA damage repair in mice. EMBO J. 19:1703–1710
  • Fanconi Anaemia/Breast Cancer Consortium. Positional cloning of the Fanconi anaemia group A gene. Nat. Genet. 14:324–328
  • Haaf, T., Golub, E. I., Reddy, G., Radding, C. M., and Ward, D. C.. 1995. 1996. Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc. Natl. Acad. Sci. USA 92:2298–2302
  • Haase, E., Riehl, D., Mack, M., and Brendel, M.. 1989. Molecular cloning of SNM1, a yeast gene responsible for a specific step in the repair of cross-linked DNA. Mol. Gen. Genet. 218:64–71
  • Henriques, J. A., and Brendel, M.. 1990. The role of PSO and SNM genes in DNA repair of the yeast Saccharomyces cerevisiae. Curr. Genet. 18:387–393
  • Henriques, J. A., Brozmanova, J., and Brendel, M.. 1997. Role of PSO genes in the repair of photoinduced interstrand cross-links and photooxidative damage in the DNA of the yeast Saccharomyces cerevisiae. J. Photochem. Photobiol. B 39:185–196
  • Henriques, J. A., and Moustacchi, E.. 1981. Interactions between mutations for sensitivity to psoralen photoaddition (pso) and to radiation (rad) in Saccharomyces cerevisiae. J. Bacteriol. 148:248–256
  • Henriques, J. A., and Moustacchi, E.. 1980. Isolation and characterization of pso mutants sensitive to photo-addition of psoralen derivatives in Saccharomyces cerevisiae. Genetics 95:273–288
  • Hiramoto, T., Nakanishi, T., Sumiyoshi, T., Fukuda, T., Matsuura, S., Tauchi, H., Komatsu, K., Shibasaki, Y., Inui, H., Watatani, M., Yasutomi, M., Sumii, K., Kajiyama, G., Kamada, N., Miyagawa, K., and Kamiya, K.. 1999. Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer. Oncogene 18:3422–3426
  • Hoeijmakers, J. H. J.. Use of microneedle injection to study DNA repair in mammalian cells A laboratory manual of research procedures Friedberg, E. C., and Hanawalt, P. C. 3:133–150 Marcel Dekker, Inc., New York, N.Y
  • Jachymczyk, W. J., von Borstel, R. C., Mowat, M. R., and Hastings, P. J.. 1981. 1988. Repair of interstrand cross-links in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: the RAD3 system and the RAD51 system. Mol. Gen. Genet. 182:196–205
  • Joenje, H., Oostra, A. B., Wijker, M., di Summa, F. M., van Berkel, C. G., Rooimans, M. A., Ebell, W., van Weel, M., Pronk, J. C., Buchwald, M., and Arwert, F.. 1997. Evidence for at least eight Fanconi anemia genes. Am. J. Hum. Genet. 61:940–944
  • Johnson, R. D., Liu, N., and Jasin, M.. 1999. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401:397–399
  • Johnson, S. W., Perez, R. P., Godwin, A. K., Yeung, A. T., Handel, L. M., Ozols, R. F., and Hamilton, T. C.. 1994. Role of platinum-DNA adduct formation and removal in cisplatin resistance in human ovarian cancer cell lines. Biochem. Pharmacol. 47:689–697
  • Kaiser, P., Mansour, H. A., Greeten, T., Auer, B., Schweiger, M., and Schneider, R.. 1994. The human ubiquitin-conjugating enzyme UbcH1 is involved in the repair of UV-damaged, alkylated and cross-linked DNA. FEBS Lett. 350:1–4
  • Kanaar, R., Hoeijmakers, J. H. J., and van Gent, D. C.. 1998. Molecular mechanisms of DNA double-strand break repair. Trends Cell. Biol. 8:483–489
  • Koken, M. H., Reynolds, P., Jaspers-Dekker, I., Prakash, L., Prakash, S., Bootsma, D., and Hoeijmakers, J. H.. 1991. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc. Natl. Acad. Sci. USA 88:8865–8869
  • Larminat, F., and Bohr, V. A.. 1994. Role of the human ERCC-1 gene in gene-specific repair of cisplatin-induced DNA damage. Nucleic Acids Res. 22:3005–3010
  • Lawley, P. D., and Phillips, D. H.. 1996. DNA adducts from chemotherapeutic agents. Mutat. Res. 355:13–40
  • Liu, N., Lamerdin, J. E., Tebbs, R. S., Schild, D., Tucker, J. D., Shen, M. R., Brookman, K. W., Siciliano, M. J., Walter, C. A., Fan, W., Narayana, L. S., Zhou, Z. Q., Adamson, A. W., Sorensen, K. J., Chen, D. J., Jones, N. J., and Thompson, L. H.. 1998. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol. Cell 1:783–793
  • Lo Ten Foe, J. R., Rooimans, M. A., Bosnoyan-Collins, L., Alon, N., Wijker, M., Parker, L., Lightfoot, J., Carreau, M., Callen, D. F., Savoia, A., Cheng, N. C., van Berkel, C. G., Strunk, M. H., Gille, J. J., Pals, G., Kruyt, F. A., Pronk, J. C., Arwert, F., Buchwald, M., and Joenje, H.. 1996. Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nat. Genet. 14:320–323
  • Magana-Schwencke, N., and Averbeck, D.. 1991. Repair of exogenous (plasmid) DNA damaged by photoaddition of 8-methoxypsoralen in the yeast Saccharomyces cerevisiae. Mutat. Res. 251:123–131
  • Magana-Schwencke, N., Henriques, J. A., Chanet, R., and Moustacchi, E.. 1982. The fate of 8-methoxypsoralen photoinduced crosslinks in nuclear and mitochondrial yeast DNA: comparison of wild-type and repair-deficient strains. Proc. Natl. Acad. Sci. USA 79:1722–1726
  • Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P. J., Bootsma, D. et al. 1994. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 13:1831–1843
  • Meniel, V., Magana-Schwencke, N., and Averbeck, D.. 1995. Preferential repair in Saccharomyces cerevisiae rad mutants after induction of interstrand cross-links by 8-methoxypsoralen plus UVA. Mutagenesis 10:543–548
  • Nagase, T., Miyajima, N., Tanaka, A., Sazuka, T., Seki, N., Sato, S., Tabata, S., Ishikawa, K., Kawarabayasi, Y., Kotani, H. et al. 1995. Prediction of the coding sequences of unidentified human genes. III. The coding sequences of 40 new genes (KIAA0081-KIAA0120) deduced by analysis of cDNA clones from human cell line KG-1 (supplement). DNA Res. 2:51–59
  • Paques, F., and Haber, J. E.. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63:349–404
  • Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R., and Piston, D. W.. 1997. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73:2782–2790
  • Pierce, A. J., Johnson, R. D., Thompson, L. H., and Jasin, M.. 1999. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13:2633–2638
  • Richter, D., Niegemann, E., and Brendel, M.. 1992. Molecular structure of the DNA cross-link repair gene SNM1 (PSO2) of the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 231:194–200
  • Ruhland, A., Haase, E., Siede, W., and Brendel, M.. 1981. Isolation of yeast mutants sensitive to the bifunctional alkylating agent nitrogen mustard. Mol. Gen. Genet. 181:346–351
  • Ruhland, A., Kircher, M., Wilborn, F., and Brendel, M.. 1981. A yeast mutant specifically sensitive to bifunctional alkylation. Mutat. Res. 91:457–462
  • Scott, B. R., Pathak, M. A., and Mohn, G. R.. 1976. Molecular and genetic basis of furocoumarin reactions. Mutat. Res. 39:29–74
  • Siede, W., and Brendel, M.. 1982. Interactions among genes controlling sensitivity to radiation (RAD) and to alkylation by nitrogen mustard (SNM) in yeast. Curr. Genet. 5:33–38
  • Simon, R., Burger, H., Brinkschmidt, C., Bocker, W., Hertle, L., and Terpe, H. J.. 1998. Chromosomal aberrations associated with invasion in papillary superficial bladder cancer. J. Pathol. 185:345–351
  • Strathdee, C. A., Gavish, H., Shannon, W. R., and Buchwald, M.. 1992. Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature 356:763–767
  • Swagemakers, S. M. A., Essers, J., de Wit, J., Hoeijmakers, J. H. J., and Kanaar, R.. 1998. The human Rad54 recombinational DNA repair protein is a double-stranded DNA-dependent ATPase. J. Biol. Chem. 273:28292–28297
  • Tan, T. L., Essers, J., Citterio, E., Swagemakers, S. M., de Wit, J., Benson, F. E., Hoeijmakers, J. H., and Kanaar, R.. 1999. Mouse Rad54 affects DNA conformation and DNA-damage-induced Rad51 foci formation. Curr. Biol. 9:325–328
  • Tebbs, R. S., Zhao, Y., Tucker, J. D., Scheerer, J. B., Siciliano, M. J., Hwang, M., Liu, N., Legerski, R. J., and Thompson, L. H.. 1995. Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene. Proc. Natl. Acad. Sci. USA 92:6354–6358
  • Thacker, J.. 1999. A surfeit of RAD51-like genes? Trends Genet. 15:166–168
  • Tong, C. Y., Ng, H. K., Pang, J. C., Hui, A. B., Ko, H. C., and Lee, J. C.. 1999. Molecular genetic analysis of non-astrocytic gliomas. Histopathology 34:331–341
  • Van Houten, B.. 1990. Nucleotide excision repair in Escherichia coli. Microbiol. Rev. 54:18–51
  • Whitney, M. A., Royle, G., Low, M. J., Kelly, M. A., Axthelm, M. K., Reifsteck, C., Olson, S., Braun, R. E., Heinrich, M. C., Rathbun, R. K., Bagby, G. C., and Grompe, M.. 1996. Germ cell defects and hematopoietic hypersensitivity to gamma-interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood 88:49–58
  • Wolter, R., Siede, W., and Brendel, M.. 1996. Regulation of SNM1, an inducible Saccharomyces cerevisiae gene required for repair of DNA cross-links. Mol. Gen. Genet. 250:162–168

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.