7
Views
23
CrossRef citations to date
0
Altmetric
Gene Expression

A GG Nucleotide Sequence of the 3′ Untranslated Region of Amyloid Precursor Protein mRNA Plays a Key Role in the Regulation of Translation and the Binding of Proteins

, , &
Pages 4572-4579 | Received 10 Dec 1999, Accepted 05 Apr 2000, Published online: 28 Mar 2023

REFERENCES

  • Amara, F. M., Junaid, A., Clough, R. R., and Liang, B.. 1999. TGF-beta(1), regulation of Alzheimer' amyloid precursor protein mRNA expression in a normal human astrocyte cell line: mRNA stabilization. Brain Res. Mol. Brain Res. 71:42–49
  • Brewer, G.. 1991. An A+U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol. Cell. Biol. 11:2460–2466
  • Chen, C.-Y. A., and Shyu, A.-B.. 1995. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20:465–470
  • Czech, C., Delaere, P., Macq, A.-F., Reibaud, M., Dreisler, S., Touchet, N., Schombert, B., Mazadier, M., Mercken, L., Theisen, M., Pradier, L., Octave, J. N., Beyreuther, K., and Tremp, G.. 1997. Proteolytical processing of mutated human amyloid precursor protein in transgenic mice. Brain Res. Mol. Brain Res. 47:108–116
  • de Sauvage, F., Kruys, V., Marinx, O., Huez, G., and Octave, J. N.. 1992. Alternative polyadenylation of the amyloid protein precursor mRNA regulates translation. EMBO J. 11:3099–3103
  • Edwards-Gilbert, G., Veraldi, K. L., and Milcareck, C.. 1997. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 25:2547–2561
  • Ford, L. P., Bagga, P. S., and Wilusz, J.. 1997. The poly(A) tail inhibits the assembly of a 3′-to-5′ exonuclease in an vitro RNA stability system. Mol. Cell. Biol. 17:398–406
  • Gorman, C. M., Moffat, L. F., and Howard, B. H.. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051
  • Gray, N. K., and Wickens, M.. 1998. Control of translation initiation in animals. Annu. Rev. Cell Dev. Biol. 14:399–458
  • Gueydan, C., Houzet, L., Marchant, A., Sels, A., Huez, G., and Kruys, V.. 1996. Engagement of tumor necrosis factor mRNA by an endotoxin-inducible cytoplasmic protein. Mol. Med. 2:479–488
  • Hentze, M. H.. 1997. eIF4G: A multiple purpose ribosome adapter? Science 275:500–501
  • Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, M. J., Masters, C. L., Grzeschik, K. H., Multhaup, G., Beyreuther, K., and Muller-Hill, B.. 1987. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 331:733–736
  • Keller, W.. 1995. No end yet to messenger RNA 3′ processing! Cell 81:829–832
  • Kern, P. A., Ranganathan, G., Yukht, A., Ong, J. M., and Davis, R. C.. 1996. Translational regulation of lipoprotein lipase by thryoid hormone is via a cytoplasmic repressor that interacts with the 3′ untranslated region. J. Lipid Res. 37:2332–2340
  • Kruys, V., Wathelet, M., Poupart, P., Contreras, R., Fiers, W., Content, J., and Huez, G.. 1987. The untranslated region of the human interferon-β mRNA has an inhibitory effect on translation. Proc. Natl. Acad. Sci. USA 84:6030–6034
  • Lai, W. S., Carballo E., Strum J. R., Kennington E. A., Phillips R. S., and Blackshear P. J.. 1999. Evidence that tristetraprolin binds to AU-rich element and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. 19:4311–4323.
  • Le, H., Tanguay, R. L., Balasta, M. L., Wei, C.-C., Browning, K. S., Metz, A. M., Goss, D. J., and Gallie, D. R.. 1997. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J. Biol. Chem. 272:16247–16255
  • Liarakos, C. D., Theus, S. A., Watson, A. S., Wahba, A. J., and Dholakia, J. N.. 1994. The translation efficiency of ovalbumine mRNA is determined in part by a 5′-end hairpin structure. Arch. Biochem. Biophys. 315:54–59
  • Malter, J. S.. 1989. Identification of an AUUUA-specific messenger RNA binding protein. Science 246:664–666
  • Maniatis, T., Fritsch, E. F., and Sambrook, J.. Molecular cloning: a laboratory manual 1982 206 Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Merrick, W. C.. 1992. Mechanism and regulation of eucaryotic protein synthesis. Microbiol. Rev. 56:291–315
  • Munroe, D., and Jacobson, A.. 1990. mRNA poly(A) tail, a 3′ enhancer of translation initiation. Mol. Cell. Biol. 10:3441–3455
  • Myamoto, S., Chiorini, J. A., Urcelay, E., and Safer, B.. 1996. Regulation of gene expression for translation initiation factor eIF-2a: importance of the 3′ untranslated region. Biochem. J. 315:791–798
  • Nakamaki, T., Imamura, J., Brewer, G., Tsuruoka, N., and Koeffler, H. P.. 1995. Characterization of adenosine-uridine-rich RNA binding factors. J. Cell. Physiol. 65:484–492
  • Ostareck, D. H., Ostareck-Ledere, A., Wilm, M., Thiele, B. J., Mann, M., and Hentze, M. W.. 1997. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell 89:597–606
  • Podlisny, M. B., Lee, G., and Selkoe, D. J.. 1987. Gene dosage of the amyloid beta precursor protein in Alzheimer's disease. Science 238:669–671
  • Rajagopalan, L. E., and Malter, J. S.. 1997. Regulation of eukaryotic messenger RNA turnover. Prog. Nucleic Acid Res. Mol. Biol. 56:257–286
  • Rajagopalan, L. E., Westmark, C. J., Jarzembowski, J. A., and Malter, J. S.. 1998. hnRNP C increases amyloid protein (APP) production by stabilizing APP mRNA. Nucleic Acids Res. 26:3418–3423
  • Ranganathan, G., Ong, J. M., Yukht, A., Saghizadeh, M., Simsolo, R. B., Pauers, A., and Kern, P. A.. 1995. Tissue specific expression of human lipoprotein lipase, effect of the 3′-untranslated region on translation. J. Biol. Chem. 270:7149–7155
  • Ranganathan, G., Vu, D., and Kern, A.. 1997. Translational regulation of lipoprotein lipase by epinephrine involves a trans-acting binding protein interacting with the 3′ untranslated region. J. Biol. Chem. 272:2515–2519
  • Rhoads, R. E.. 1993. Regulation of eukaryotic protein synthesis by initiation factors. J. Biol. Chem. 268:3017–3020
  • Rogers, J. T., Leiter, L. M., McPhee, J., Cahill, C. M., Zhan, S. S., Potter, H., and Nilsson, L. N.. 1999. Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J. Biol. Chem. 274:6421–6431
  • Romeo, D. S., Park, K., Roberts, A. B., Sporn, M. B., and Kim, S.-J.. 1993. Growth factor-b1 5′ untranslated region represses translation and specifically binds a cytosolic factor. Mol. Endocrinol. 7:759–766
  • Ross, J.. 1995. mRNA stability in mammalian cells. Microbiol. Rev. 59:423–450
  • Rumble, B., Retallack, R., Hilbich, C., Simms, G., Multhaup, G., Martins, R., Hockey, A., Montgomery, P., Beyreuther, K., and Masters, C. L.. 1989. Amyloid A4 protein and its precursor in Down's syndrome and Alzheimer's disease. N. Engl. J. Med. 320:1446–1452
  • Sachs, A. B., and Davis, R. W.. 1989. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58:857–867
  • Sachs, A. B., Sarnow, P., and Hentze, M. W.. 1997. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89:831–838
  • Sharp, P. A.. 1994. Split genes and RNA splicing. Cell 77:805–815
  • Smibert, C. A., Wilson, J. E., Kerr, K., and Macdonald, P. M.. 1996. Smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 10:2600–2609
  • Tarun, S. Z., and Sachs, A.. 1995. A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9:2997–3007
  • Thomson, A. M., Rogers, J. T., and Leedman, P. J.. 1999. Iron regulatory proteins, iron responsive elements and ferritin mRNA translation. Int. J. Biochem. Cell Biol. 31:1139–1152
  • Vakalopoulou, E., Schaack, J., and Shenk, T.. 1991. A 32-kilodalton protein binds to AU-rich domains in the 3′ untranslated regions of rapidly degraded mRNAs. Mol. Cell. Biol. 11:3355–3364
  • Winstall, E., Gamache, M., and Raymond, V.. 1995. Rapid mRNA degradation mediated by the c-fos 3′ AU-rich element and that mediated by the granulocyte-macrophage colony-stimulating factor 3′ AU-rich element occur through similar polysome-associated mechanisms. Mol. Cell. Biol. 15:3796–3804
  • Xu, N., Chen, C.-Y., and Shyu, A.-B.. 1997. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol. Cell. Biol. 17:4611–4621
  • Zaidi, S. H. E., and Malter, J. S.. 1995. Nucleolin and heterogeneous nuclear ribonucleoprotein C proteins specifically interact with the 3′-untranslated region of amyloid protein precursor mRNA. J. Biol. Chem. 270:17292–17298
  • Zelus, B. D., Giebelhaus, D. H., Eib, D. W., Kenner, K. A., and Moon, R. T.. 1989. Expression of the poly(A)-binding protein during development of Xenopus laevis. Mol. Cell. Biol. 9:2756–2760
  • Zhao, C., Tan, W., Sokolowski, M., and Schwartz, S.. 1996. Identification of nuclear and cytoplasmic proteins that interact specifically with an AU-rich, cis-acting inhibitory sequence in the 3′ untranslated region of human papillomavirus type 1 late mRNAs. J. Virol. 70:3659–3667

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.