67
Views
92
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Eap1p, a Novel Eukaryotic Translation Initiation Factor 4E-Associated Protein in Saccharomyces cerevisiae

, , , , &
Pages 4604-4613 | Received 12 Jul 1999, Accepted 27 Mar 2000, Published online: 28 Mar 2023

REFERENCES

  • Alarcon, C. M., Heitman, J., and Cardenas, M. E.. 1999. Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast. Mol. Biol. Cell 10:2531–2546
  • Altmann, M., Blum, S., Wilson, T. M., and Trachsel, H.. 1990. The 5′-leader sequence of tobacco mosaic virus RNA mediates initiation-factor-4E-independent, but still initiation-factor-4A-dependent translation in yeast extracts. Gene 91:127–129
  • Altmann, M., Edery, I., Sonenberg, N., and Trachsel, H.. 1985. Purification and characterization of protein synthesis initiation factor eIF-4E from the yeast Saccharomyces cerevisiae. Biochemistry 24:6085–6089
  • Altmann, M., Krieger, M., and Trachsel, H.. 1989. Nucleotide sequence of the gene encoding a 20 kDa protein associated with the cap binding protein eIF-4E from Saccharomyces cerevisiae. Nucleic Acids Res. 17: 7520
  • Altmann, M., Muller, P. P., Pelletier, J., Sonenberg, N., and Trachsel, H.. 1989. A mammalian translation initiation factor can substitute for its yeast homologue in vivo. J. Biol. Chem. 264:12145–12147
  • Altmann, M., Schmitz, N., Berset, C., and Trachsel, H.. 1997. A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. EMBO J. 16:1114–1121
  • Altmann, M., Sonenberg, N., and Trachsel, H.. 1989. Translation in Saccharomyces cerevisiae: initiation factor 4E-dependent cell-free system. Mol. Cell. Biol. 9:4467–4472
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J.. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410
  • Appel, R. D., Bairoch, A., and Hochstrasser, D. F.. 1994. A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem. Sci. 19:258–260
  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K.. 1995. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y
  • Barbet, N. C., Schneider, U., Helliwell, S. B., Stansfield, I., Tuite, M. F., and Hall, M. N.. 1996. TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell 7:25–42
  • Barnes, C. A., Mackenzie, M. M., Johnston, G. C., and Singer, R. A.. 1995. Efficient translation of an ssa1-derived heat-shock mRNA in yeast cells limited for cap-binding protein and eIF-4F. Mol. Gen. Genet. 246:619–627
  • Beck, T., and Hall, M. N.. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692
  • Beretta, L., Gingras, A. C., Svitkin, Y. V., Hall, M. N., and Sonenberg, N.. 1996. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 15:658–664
  • Berset, C., Trachsel, H., and Altmann, M.. 1998. The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95:4264–4269
  • Blanar, M. A., and Rutter, W. J.. 1992. Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-Fos. Science 256:1014–1018
  • Brenner, C., Nakayama, N., Goebl, M., Tanaka, K., Toh-e, A., and Matsumoto, K.. 1988. CDC33 encodes mRNA cap-binding protein eIF-4E of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:3556–3559
  • Brunn, G. J., Fadden, P., Haystead, T. J., and Lawrence, J. C. J.. 1997. The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J. Biol. Chem. 272:32547–32550
  • Brunn, G. J., Hudson, C. C., Sekulic, A., Williams, J. M., Hosoi, H., Houghton, P. J., Lawrence, J. C., and Abraham, R. T.. 1997. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277:99–101
  • Burnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H., and Sabatini, D. M.. 1998. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl. Acad. Sci. USA 95:1432–1437
  • Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O., and Herskowitz, I.. 1998. The transcriptional program of sporulation in budding yeast. Science 282:699–705
  • Craig, A. W., Cosentino, G. P., Donze, O., and Sonenberg, N.. 1996. The kinase insert domain of interferon-induced protein kinase PKR is required for activity but not for interaction with the pseudosubstrate K3L. J. Biol. Chem. 271:24526–24533
  • Danaie, P., Altmann, M., Hall, M. N., Trachsel, H., and Helliwell, S. B.. 1999. CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E. Biochem. J. 340:135–141
  • de la Cruz, J., Iost, I., Kressler, D., and Linder, P.. 1997. The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:5201–5206
  • Dennis, P. B., Fumagalli, S., and Thomas, G.. 1999. Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation. Curr. Opin. Genet. Dev. 9:49–54
  • DeRisi, J. L., Iyer, V. R., and Brown, P. O.. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686
  • Di Como, C., and Arndt, K. T.. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 10:1904–1916
  • Dingwall, C., and Laskey, R. A.. 1991. Nuclear targeting sequences—a consensus? Trends Biochem. Sci. 16:478–481
  • Dujon, B., Alexandraki, D., Andre, B., Ansorge, W., Baladron, V., Ballesta, J. P., Banrevi, A., Bolle, P. A., Bolotin-Fukuhara, M., Bossier, P. et al. 1994. Complete DNA sequence of yeast chromosome XI. Nature 369:371–378
  • Edery, I., Altmann, M., and Sonenberg, N.. 1988. High-level synthesis in Escherichia coli of functional cap-binding eukaryotic initiation factor eIF-4E and affinity purification using a simplified cap-analog resin. Gene 74:517–525
  • Edery, I., Lee, K. A., and Sonenberg, N.. 1984. Functional characterization of eukaryotic mRNA cap binding protein complex: effects on translation of capped and naturally uncapped RNAs. Biochemistry 23:2456–2462
  • Fadden, P., Haystead, T. A., and Lawrence, J. C.. 1997. Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J. Biol. Chem. 272:10240–10247
  • Gietz, D., St. Jean, A., Woods, R. A., and Schiestl, R. H.. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425
  • Gietz, R. D., and Sugino, A.. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534
  • Gingras, A. C., Gygi, S. P., Raught, B., Polakiewicz, R. D., Abraham, R. T., Hoekstra, M. F., Aebersold, R., and Sonenberg, N.. 1999. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13:1422–1437
  • Gingras, A. C., Raught, B., and Sonenberg, N.. 1999. eIF4F initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68:913–963
  • Goyer, C., Altmann, M., Lee, H. S., Blanc, A., Deshmukh, M., Woolford, J. L. J., Trachsel, H., and Sonenberg, N.. 1993. TIF4631 and TIF4632: two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Mol. Cell. Biol. 13:4860–4874
  • Guthrie, C., and Fink, G. R.. Methods in enzymology, vol. 194: Guide to yeast genetics and molecular biology, Academic Press, New York, N.Y.
  • Haghighat, A., Mader, S., Pause, A., and Sonenberg, N.. 1995. 1991. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14:5701–5709
  • Haghighat, A., Svitkin, Y., Novoa, I., Kuechler, E., Skern, T., and Sonenberg, N.. 1996. The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J. Virol. 70:8444–8450
  • Hanic-Joyce, P. J., Johnston, G. C., and Singer, R. A.. 1987. Regulated arrest of cell proliferation mediated by yeast prt1 mutations. Exp. Cell Res. 172:134–145
  • Hara, K., Yonezawa, K., Kozlowski, M. T., Sugimoto, T., Andrabi, K., Weng, Q. P., Kasuga, M., Nishimoto, I., and Avruch, J.. 1997. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272:26457–26463
  • Heitman, J., Movva, N. R., and Hall, M. N.. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909
  • Helliwell, S. B., Wagner, P., Kunz, J., Deuter-Reinhard, M., Henriquez, R., and Hall, M. N.. 1994. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol. Biol. Cell 5:105–118
  • Jaramillo, M., Dever, T. E., Merrick, W. C., and Sonenberg, N.. 1991. RNA unwinding in translation: assembly of helicase complex intermediates comprising eukaryotic initiation factors eIF-4F and eIF-4B. Mol. Cell. Biol. 11:5992–5997
  • Jefferies, H. B., Fumagalli, S., Dennis, P. B., Reinhard, C., Pearson, R. B., and Thomas, G.. 1997. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 16:3693–3704
  • Jefferies, H. B. J., and Thomas, G.. 1996. Ribosomal protein S6 phosphorylation and signal transduction Translational control. Hershey, J. W., Mathews, M. B., and Sonenberg, N. 389–409 Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Jiang, Y., and Broach, J. R.. 1999. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J. 18:2782–2792
  • Johnson, S. P., and Warner, J. R.. 1987. Phosphorylation of the Saccharomyces cerevisiae equivalent of ribosomal protein S6 has no detectable effect on growth. Mol. Cell. Biol. 7:1338–1345
  • Kaiser, C., Michaelis, S., and Mitchell, A.. 1994. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Kruse, C., Johnson, S. P., and Warner, J. R.. 1985. Phosphorylation of the yeast equivalent of ribosomal protein S6 is not essential for growth. Proc. Natl. Acad. Sci. USA 82:7515–7519
  • Kunz, J., Henriquez, R., Schneider, U., Deuter-Reinhard, M., Movva, N. R., and Hall, M. N.. 1993. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73:585–596
  • Lang, V., Zanchin, N. I., Lunsdorf, H., Tuite, M., and McCarthy, J. E.. 1994. Initiation factor eIF-4E of Saccharomyces cerevisiae. Distribution within the cell, binding to mRNA, and consequences of its overproduction. J. Biol. Chem. 269:6117–6123
  • Lanker, S., Muller, P. P., Altmann, M., Goyer, C., Sonenberg, N., and Trachsel, H.. 1992. Interactions of the eIF-4F subunits in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 267:21167–21171
  • Lawrence, J. C. J., Fadden, P., Haystead, T. A., and Lin, T. A.. 1997. PHAS proteins as mediators of the actions of insulin, growth factors and cAMP on protein synthesis and cell proliferation. Adv. Enzyme Regul. 37:239–267
  • Lin, T. A., Kong, X., Haystead, T. A., Pause, A., Belsham, G., Sonenberg, N., and Lawrence, J. C. J.. 1994. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266:653–656
  • Lorenz, M. C., and Heitman, J.. 1995. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J. Biol. Chem. 270:27531–27537
  • Mader, S., Lee, H., Pause, A., and Sonenberg, N.. 1995. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15:4990–4997
  • Merrick, W. C., and Hershey, J. W.. 1996. The pathway and mechanism of eukaryotic protein synthesis Translational control. Hershey, J. W., Mathews, M. B., and Sonenberg, N. 31–70 Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Neff, C. L., and Sachs, A. B.. 1999. Eukaryotic translation initiation factors 4G and 4A from Saccharomyces cerevisiae interact physically and functionally. Mol. Cell. Biol. 19:5557–5564
  • Noda, T., and Ohsumi, Y.. 1998. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273:3963–3966
  • Pause, A., Belsham, G. J., Gingras, A. C., Donze, O., Lin, T. A., Lawrence, J. C., and Sonenberg, N.. 1994. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–767
  • Poulin, F., Gingras, A. C., Olsen, H., Chevalier, S., and Sonenberg, N.. 1998. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J. Biol. Chem. 273:14002–14007
  • Powers, T., and Walter, P.. 1999. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 10:987–1000
  • Ptushkina, M., Vasilescu, S., Fierro-Monti, I., Rohde, M., and McCarthy, J. E.. 1996. Intracellular targeting and mRNA interactions of the eukaryotic translation initiation factor eIF4E in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1308:142–150
  • Ptushkina, M., von der Haar, T., Vasilescu, S., Frank, R., Birkenhager, R., and McCarthy, J. E.. 1998. Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5′ cap in yeast involves a site partially shared by p20. EMBO J. 17:4798–4808
  • Ray, B. K., Lawson, T. G., Kramer, J. C., Cladaras, M. H., Grifo, J. A., Abramson, R. D., Merrick, W. C., and Thach, R. E.. 1985. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem. 260:7651–7658
  • Richard, G. F., Fairhead, C., and Dujon, B.. 1997. Complete transcriptional map of yeast chromosome XI in different life conditions. J. Mol. Biol. 268:303–321
  • Schmidt, A., Beck, T., Koller, A., Kunz, J., and Hall, M. N.. 1998. The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J. 17:6924–6931
  • Sleat, D. E., Gallie, D. R., Jefferson, R. A., Bevan, M. W., Turner, P. C., and Wilson, T. M.. 1987. Characterisation of the 5′-leader sequence of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene 60:217–225
  • Sonenberg, N.. 1996. mRNA 5′ cap-binding protein eIF4E and control of cell growth Translational control. Hershey, J. W., Mathews, M. B., and Sonenberg, N. 245–269 Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Sonenberg, N., and Gingras, A. C.. 1998. The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell Biol. 10:268–275
  • Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., and Futcher, B.. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9:3273–3297
  • Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W.. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185:60–89
  • Svitkin, Y. V., Hahn, H., Gingras, A. C., Palmenberg, A. C., and Sonenberg, N.. 1998. Rapamycin and wortmannin enhance replication of a defective encephalomyocarditis virus. J. Virol. 72:5811–5819
  • Tarun, S. Z. J., and Sachs, A. B.. 1997. Binding of eukaryotic translation initiation factor 4E (eIF4E) to eIF4G represses translation of uncapped mRNA. Mol. Cell. Biol. 17:6876–6886
  • Thomas, G., and Hall, M. N.. 1997. TOR signalling and control of cell growth. Curr. Opin. Cell Biol. 9:782–787
  • Velculescu, V. E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M. A., Bassett, D. E. J., Hieter, P., Vogelstein, B., and Kinzler, K. W.. 1997. Characterization of the yeast transcriptome. Cell 88:243–251
  • Vinson, C. R., LaMarco, K. L., Johnson, P. F., Landschulz, W. H., and McKnight, S. L.. 1988. In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev. 2:801–806
  • von Manteuffel, S., Dennis, P. B., Pullen, N., Gingras, A. C., Sonenberg, N., and Thomas, G.. 1997. The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol. Cell. Biol. 17:5426–5436
  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J.. 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945–951
  • Zanchin, N. I., and McCarthy, J. E.. 1995. Characterization of the in vivo phosphorylation sites of the mRNA cap-binding complex proteins eukaryotic initiation factor-4E and p20 in Saccharomyces cerevisiae. J. Biol. Chem. 270:26505–26510
  • Zaragoza, D., Ghavidel, A., Heitman, J., and Schultz, M. C.. 1998. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol. Cell. Biol. 18:4463–4470
  • Zheng, X. F., Florentino, D., Chen, J., Crabtree, G. R., and Schreiber, S. L.. 1995. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82:121–130

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.