16
Views
86
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Involvement of Ras and Ral in Chemotactic Migration of Skeletal Myoblasts

, , , &
Pages 4658-4665 | Received 10 Jan 2000, Accepted 13 Apr 2000, Published online: 28 Mar 2023

REFERENCES

  • Amthor, H., Christ, B., Weil, M., and Patel, K.. 1998. The importance of timing differentiation during limb muscle development. Curr. Biol. 8:642–652
  • Andersson, S., Davis, D. L., Dahlback, H., Jornvall, H., and Russell, D. W.. 1989. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 264:8222–8229
  • Arnold, H. H., and Winter, B.. 1998. Muscle differentiation: more complexity to the network of myogenic regulators. Curr. Opin. Genet. Dev. 8:539–544
  • Bischoff, R.. 1997. Chemotaxis of skeletal muscle satellite cells. Dev. Dyn. 208:505–515
  • Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A., and Birchmeier, C.. 1995. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376:768–771
  • Blagden, C. S., and Hughes, S. M.. 1999. Extrinsic influences on limb muscle organization. Cell Tissue Res. 296:141–150
  • Brand-Saberi, B., and Christ, B.. 1999. Genetic and epigenetic control of muscle development in vertebrates. Cell Tissue Res. 296:199–212
  • Brand-Saberi, B., Muller, T. S., Wilting, J., Christ, B., and Birchmeier, C.. 1996. Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb level in vivo. Dev. Biol. 179:303–308
  • Cannon, J. G., and St. Pierre, B. A.. 1998. Cytokines in exertion-induced skeletal muscle injury. Mol. Cell. Biochem. 179:159–167
  • Cantor, S. B., Urano, T., and Feig, L. A.. 1995. Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol. Cell. Biol. 15:4578–4584
  • Cross, M. J., Roberts, S., Ridley, A. J., Hodgkin, M. N., Stewart, A., Claesson-Welsh, L., and Wakelam, M. J. O.. 1996. Stimulation of actin stress fibre formation mediated by activation of phospholipase D. Curr. Biol. 6:588–597
  • Dealy, C. N., Clarke, K., and Scranton, V.. 1996. Ability of FGFs to promote the outgrowth and proliferation of limb mesoderm is dependent on IGF-I activity. Dev. Dyn. 206:463–469
  • Dealy, C. N., and Kosher, R. A.. 1995. Studies on insulin-like growth factor-I and insulin in chick limb morphogenesis. Dev. Dyn. 202:67–79
  • Dealy, C. N., and Kosher, R. A.. 1996. IGF-I and insulin in the acquisition of limb-forming ability by the embryonic lateral plate. Dev. Biol. 177:291–299
  • Dietrich, S.. 1999. Regulation of hypaxial muscle development. Cell Tissue Res. 296:175–182
  • Floss, T., Arnold, H. H., and Braun, T.. 1997. A role for FGF-6 in skeletal muscle regeneration. Genes Dev. 11:2040–2051
  • Fox, P. L., Sa, G., Dobrowolski, S. F., and Stacey, D. W.. 1994. The regulation of endothelial cell motility by p21 ras. Oncogene 9:3519–3526
  • Franke, B., Akkerman, J. W., and Bos, J. L.. 1997. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 16:252–259
  • Gal-Levi, R., Leshem, Y., Aoki, S., Nakamura, T., and Halevy, O.. 1998. Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochem. Biophys. Acta 1402:39–51
  • Gawler, D. J.. 1998. Points of convergence between Ca2+ and Ras signalling pathways. Biochem. Biophys. Acta 1448:171–182
  • Geduspan, J. S., Padanilam, B. J., and Solursh, M.. 1992. Coordinate expression of IGF-I and its receptor during limb outgrowth. Dev. Dyn. 195:67–73
  • Hartmann, G., Weidner, K. M., Schwarz, H., and Birchmeier, W.. 1994. The motility signal of scatter factor/hepatocyte growth factor mediated through the receptor tyrosine kinase met requires intracellular action of Ras. J. Cell Biol. 269:21936–21939
  • Heymann, S., Koudrova, M., Arnold, H. H., Köster, M., and Braun, T.. 1996. Regulation and function of SF/HGF during migration of limb muscle precursor cells in chicken. Dev. Biol. 180:566–578
  • Hofer, F., Berdeaux, R., and Martin, G. S.. 1998. Ras-independent activation of Ral by a Ca2+-dependent pathway. Curr. Biol. 8:839–842
  • Husmann, I., Soulet, L., Gautron, J., Martelly, I., and Barritault, D.. 1996. Growth factors in skeletal muscle regeneration. Cytokine Growth Factor Rev. 7:249–258
  • Insall, R. H., Borleis, J., and Devreotes, P. N.. 1996. The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Curr. Biol. 6:719–729
  • Itoh, N., Mima, T., and Mikawa, T.. 1996. Loss of fibroblast growth factor receptors is necessary for terminal differentiation of embryonic limb muscle. Development 122:291–300
  • Jennische, E., Ekberg, S., and Matejka, G. L.. 1993. Expression of hepatocyte growth factor in growing and regenerating rat skeletal muscle. Am. J. Physiol. 265:C122–C128
  • Jiang, H., Luo, J. Q., Urano, T., Frankel, P., Lu, Z., Foster, D. A., and Feig, L. A.. 1995. Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature 378:409–412
  • Jones, D., Morgan, C., and Cockcroft, S.. 1999. Phospholipase D and membrane traffic: potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim. Biophys. Acta 1439:229–244
  • Jullien-Flores, V., Dorseuil, O., Romero, F., Letourneur, F., Saragosti, S., Berger, R., Tavitian, A., Gacon, G., and Camonis, J. H.. 1995. Bridging Ral GTPase to Rho pathways. J. Biol. Chem. 270:22473–22477
  • Kaziro, Y., Itoh, H., Kozasa, T., Nakafuku, M., and Satoh, T.. 1991. Structure and function of signal-transducing GTP-binding proteins. Annu. Rev. Biochem. 60:340–400
  • Khwaja, A., Lehmann, K., Marte, B. M., and Downward, J.. 1998. Phosphoinositide 3-kinase induces scattering and tubulogenesis in epithelial cells through a novel pathway. J. Biol. Chem. 273:18793–18801
  • Kundra, V., Anand-Apte, B., Feig, L. A., and Zetter, B. R.. 1995. The chemotactic response to PDGF-BB: evidence of a role for Ras. J. Cell Biol. 130:725–731
  • Kundra, V., Escobedo, J. A., Kazlauskas, A., Kim, H. K., Rhee, S. G., Williams, L. T., and Zetter, B. R.. 1994. Regulation of chemotaxis by the platelet-derived growth factor receptor-β. Nature 367:474–476
  • Lassar, A. B., and Münsterberg, A. E.. 1996. The role of positive and negative signals in somite patterning. Curr. Opin. Neurobiol. 6:57–63
  • Lawson, M. A., and Maxfield, F. R.. 1995. Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377:75–79
  • Lee, K. K. H., Wong, C. C., Webb, S. E., Tang, M. K., Leung, A. K. C., Kwok, P. F., Cai, D. Q., and Chan, K. M.. 1999. Hepatocyte growth factor stimulates chemotactic response in mouse embryonic limb myogenic cells in vitro. J. Exp. Zool. 283:170–180
  • Lee, T., Feig, L. A., and Montell, D. J.. 1996. Two distinct roles for Ras in a developmentally regulated cell migration. Development 122:409–418
  • Lefaucheur, J. P., and Sébille, A.. 1995. Muscle regeneration following injury can be modified in vivo by immune neutralization of basic fibroblast growth factor, transforming growth factor or insulin-like growth factor I. J. Neuroimmunol. 57:85–91
  • Lefaucheur, J. P., and Sébille, A.. 1995. Basic fibroblast growth factor promotes in vivo muscle regeneration in murine muscular dystrophy. Neurosci. Lett. 202:121–124
  • Li, S., and Muneoka, K.. 1999. Cell migration and chick limb development: chemotactic action of FGF-4 and the AER. Dev. Biol. 211:335–347
  • MacGregor, J., and Parkhouse, W. S.. 1996. The potential role of insulin-like growth factors in skeletal muscle regeneration. Can. J. Appl. Physiol. 21:236–250
  • Martin, G. R.. 1998. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12:1571–1586
  • Matsubara, K., Kishida, S., Matsuura, Y., Kitayama, H., Noda, M., and Kikuchi, A.. 1999. Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene 18:1303–1312
  • McNeil, P. L., McKenna, M. P., and Taylor, D. L.. 1985. A transient rise in cytosolic calcium follows stimulation of quiescent cells with growth factors and is inhibitable with phorbol myristate acetate. J. Cell Biol. 101:372–379
  • Mine, T., Kojima, I., Ogata, E., and Nakamura, T.. 1991. Comparison of effects of HGF and EGF on cellular calcium in rat hepatocytes. Biochem. Biophys. Res. Commun. 181:1173–1180
  • Molkentin, J. D., and Olson, E. N.. 1996. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev. 6:445–453
  • M'Rabet, L., Coffer, P. J., Wolthuis, R. M. F., Zwartkruis, F., Koenderman, L., and Bos, J. L.. 1999. Differential fMet-Leu-Phe- and platelet-activating factor-induced signaling toward Ral activation in primary human neutrophils. J. Biol. Chem. 274:21847–21852
  • Nakashima, S., Morinaka, K., Koyama, S., Ikeda, M., Kishida, M., Okawa, K., Iwamatsu, A., Kishida, S., and Kikuchi, A.. 1999. Small G protein Ral and its downstream molecules regulate endocytosis of EGF and insulin receptors. EMBO J. 18:3629–3642
  • Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H., and Stossel, T. P.. 1999. The small GTPase RalA targets filamin to induce filopodia. Proc. Natl. Acad. Sci. USA 96:2122–2128
  • Ohuchi, H., and Noji, S.. 1999. Fibroblast-growth-factor-induced additional limbs in the study of initiation of limb formation, limb identity, myogenesis, and innervation. Cell Tissue Res. 296:45–56
  • Olson, E. N.. 1992. Proto-oncogenes in the regulatory circuit for myogenesis. Semin. Cell Biol. 3:127–136
  • Olson, E. N.. 1992. Interplay between proliferation and differentiation within the myogenic lineage. Dev. Biol. 154:261–272
  • Ordahl, C. P., and Le Douarin, N.. 1992. Two myogenic lineages within the developing somite. Development 114:339–353
  • Park, S. H., and Weinberg, R. A.. 1995. A putative effector of Ral has homology to Rho/Rac GTPase activating proteins. Oncogene 11:2349–2355
  • Potempa, S., and Ridley, A. J.. 1998. Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol. Biol. Cell 9:2185–2200
  • Quaroni, A., and Paul, E. C. A.. 1999. Cytocentrin is a Ral-binding protein involved in the assembly and function of the mitotic apparatus. J. Cell Sci. 112:707–718
  • Reichman-Fried, M., Dickson, B., Hafen, E., and Shilo, B. Z.. 1994. Elucidation of the role of breathless, a Drosophila FGF receptor homolog, in tracheal cell migration. Genes Dev. 8:428–439
  • Ridley, A. J., Comoglio, P. M., and Hall, A.. 1995. Regulation of scatter factor/hepatocyte growth factor response by Ras, Rac, and Rho in MDCK cells. Mol. Cell. Biol. 15:1110–1122
  • Royal, I., and Park, M.. 1995. Hepatocyte growth factor-induced scatter of Madin-Darby canine kidney cells requires phosphatidylinositol 3-kinase. J. Biol. Chem. 270:27780–27787
  • Sosnowski, R. G., Feldman, S., and Feramisco, J. R.. 1993. Interference with endogenous ras function inhibits cellular responses to wounding. J. Cell Biol. 121:113–119
  • Stockdale, F. E.. 1992. Myogenic cell lineages. Dev. Biol. 154:284–298
  • Streck, R. D., Wood, T. L., Hsu, M. S., and Pintar, J. E.. 1992. Insulin-like growth factor-I and -II and insulin-like growth factor binding protein-2 RNA are expressed in adjacent tissues within rat embryonic and fetal limbs. Dev. Biol. 151:586–596
  • Sundaram, M., Yochem, J., and Han, M.. 1996. A Ras-mediated signal transduction pathway is involved in the control of sex myoblast migration in Caenorhabditis elegans. Development 122:2823–2833
  • Terada, K., Kaziro, Y., and Satoh, T.. 1995. Ras is not required for the interleukin 3-induced proliferation of a mouse pro-B cell line, BaF3. J. Biol. Chem. 270:27880–27886
  • Tsuda, T., Kaibuchi, K., Kawahara, Y., Fukuzaki, H., and Takai, Y.. 1985. Induction of protein kinase C activation and Ca2+ mobilization by fibroblast growth factor in Swiss 3T3 cells. FEBS Lett. 191:205–210
  • Tuxworth, R. I., Cheetham, J. L., Machesky, L. M., Spiegelmann, G. B., Weeks, G., and Insall, R. H.. 1997. Dictyostelium RasG is required for normal motility and cytokinesis, but not growth. J. Cell Biol. 138:605–614
  • Vojtek, A. B., and Der, C. J.. 1998. Increasing complexity of the Ras signaling pathway. J. Biol. Chem. 273:19925–19928
  • Wang, K. L., and Roufogalis, B. D.. 1999. Ca2+/calmodulin stimulates GTP binding to the Ras-related protein Ral-A. J. Biol. Chem. 274:14525–14528
  • Watt, D. J., Karasinski, J., Moss, J., and England, M. A.. 1994. Migration of muscle cells. Nature 368:406–407
  • Webb, S. E., Lee, K. K. H., Tang, M. K., and Ede, D. A.. 1997. Fibroblast growth factors 2 and 4 stimulate migration of mouse embryonic limb myogenic cells. Dev. Dyn. 209:206–216
  • Wennström, S., Siegbahn, A., Yokote, K., Arvidsson, A. K., Heldin, C. H., Mori, S., and Claesson-Welsh, L.. 1994. Membrane ruffling and chemotaxis transduced by the PDGF beta-receptor require the binding site for phosphatidylinositol 3′ kinase. Oncogene 9:651–660
  • White, M. A., Vale, T., Camonis, J. H., Schaefer, E., and Wigler, M. H.. 1996. A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J. Biol. Chem. 271:16439–16442
  • Wolthuis, R. M. F., and Bos, J. L.. 1998. Ras caught in another affair: the exchange factors for Ral. Curr. Opin. Genet. Dev. 9:112–117
  • Wolthuis, R. M. F., Franke, B., van Triest, M., Bauer, B., Cool, R. H., Camonis, J. H., Akkerman, J. W. N., and Bos, J. L.. 1998. Activation of the small GTPase Ral in platelets. Mol. Cell. Biol. 18:2486–2491
  • Wolthuis, R. M. F., Zwartkruis, F., Moen, T. C., and Bos, J. L.. 1998. Ras-dependent activation of the small GTPase Ral. Curr. Biol. 8:471–474
  • Yaffe, D., and Saxel, O.. 1977. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727
  • Zigmond, S. H., and Hirsch, J. G.. 1973. Leukocyte locomotion and chemotaxis: new methods for evaluation, and demonstration of a cell-derived chemotactic factor. J. Exp. Med. 137:387–410
  • Zwartkruis, F. J. T., Wolthuis, R. M. F., Nabben, N. M. J. M., Franke, B., and Bos, J. L.. 1998. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J. 17:5905–5912

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.