144
Views
312
CrossRef citations to date
0
Altmetric
Gene Expression

Characterization of the Role of AMP-Activated Protein Kinase in the Regulation of Glucose-Activated Gene Expression Using Constitutively Active and Dominant Negative Forms of the Kinase

, , , , , , & show all
Pages 6704-6711 | Received 03 Apr 2000, Accepted 20 Jun 2000, Published online: 28 Mar 2023

REFERENCES

  • Carling, D., Aguan, K., Woods, A., Verhoeven, A. J. M., Beri, R. K., Brennan, C. H., Sidebottom, C., Davison, M. D., and Scott, J.. 1994. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J. Biol. Chem. 269:11442–11448
  • Celenza, J. L., and Carlson, M.. 1989. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 9:5034–5044
  • Celenza, J. L., and Carlson, M.. 1986. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180
  • Cheung, P. C. F., Salt, I. P., Davies, S. P., Hardie, D. G., and Carling, D.. 2000. Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding. Biochem. J. 346:659–669
  • Chomczynski, P., and Sacchi, N.. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159
  • Corton, J. M., Gillespie, J. G., Hawley, S. A., and Hardie, D. G.. 1995. 5-Aminoimidazole-4-carboxamide ribonucleoside—a specific method for activating AMP-activated protein kinase in intact cells. Eur. J. Biochem. 229:558–565
  • Coupe, C., Perdereau, D., Ferre, P., Hitier, Y., Narkewicz, M., and Girard, J.. 1990. Lipogenic enzyme activities and mRNA in rat adipose tissue at weaning. Am. J. Physiol. 258:E126–E133
  • Crute, B. E., Seefeld, K., Gamble, J., Kemp, B. E., and Witters, L. A.. 1998. Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem. 273:35347–35354
  • Dale, S., Wilson, W. A., Edelman, A. M., and Hardie, D. G.. 1995. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher-plant HMG-CoA reductase kinase-A, yeast Snf1, and mammalian calmodulin-dependent protein kinase-I. FEBS Lett. 361:191–195
  • Decaux, J. F., Antoine, B., and Kahn, A.. 1989. Regulation of the expression of the L-type pyruvate kinase gene in adult rat hepatocytes in primary culture. J. Biol. Chem. 264:11584–11590
  • Emtage, P. C. R., Wan, Y., Bramson, J. L., Graham, F. L., and Gauldie, J.. 1998. A double recombinant adenovirus expressing the costimulatory molecule B7-1 (murine) and human IL-2 induces complete tumor regression in a murine breast adenocarcinoma model. J. Immunol. 160:2531–2538
  • Evan, G. I., Lewis, G. K., Ramsay, G., and Bishop, J. M.. 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5:3610–3616
  • Foretz, M., Carling, D., Guichard, C., Ferre, P., and Foufelle, F.. 1998. AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J. Biol. Chem. 272:14767–14771
  • Foretz, M., Pacot, C., Dugail, I., Lemarchand, P., Guichard, C., Berthelier-Lubrano, C., Spiegelman, B., Kim, J. B., Ferre, P., and Foufelle, F.. 1999. ADD1/SREBP1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol. Cell. Biol. 19:3760–3768
  • Girard, J., Ferre, P., and Foufelle, F.. 1997. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu. Rev. Nutr. 17:325–352
  • Hardie, D. G., and Carling, D.. 1997. The AMP-activated protein kinase: fuel gauge of the mammalian cell? Eur. J. Biochem. 246:259–273
  • Hardie, D. G., Carling, D., and Carlson, M.. 1998. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67:821–855
  • Hardie, D. G., Carling, D., and Sim, A. T. R.. 1989. The AMP-activated protein kinase—a multisubstrate regulator of lipid metabolism. Trends Biochem. Sci. 14:20–23
  • Hardie, D. G., Salt, I. P., Hawley, S. A., and Davies, S. P.. 1999. AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochem. J. 338:717–722
  • Hawley, S. A., Davison, M. D., Woods, A., Davies, S. P., Beri, R. K., Carling, D., and Hardie, D. G.. 1996. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 271:27879–27887
  • Hayashi, T., Hirshman, M. F., Kurth, E. J., Winder, W. W., and Goodyear, L. J.. 1998. Evidence for AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369–1373
  • He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B.. 1998. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95:2509–2514
  • Holmes, B. F., Kurth-Kraczec, E. J., and Winder, W. W.. 1999. Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J. Appl. Physiol. 87:1990–1995
  • Jacoby, D. B., Zilz, N. D., and Towle, H. C.. 1989. Sequences within the 5′-flanking region of the S14 gene confer responsiveness to glucose in primary hepatocytes. J. Biol. Chem. 264:17623–17626
  • Javaux, F., Vincent, M. F., Wagner, D. R., and Van den Berghe, G.. 1995. Cell-type specificity of inhibition of glycolysis by 5-amino-4 imidazolecarboxamide riboside. Lack of effect in rabbit cardiomyocytes and human erythrocytes, and inhibition in FTO-2B rat hepatoma cells. Biochem. J. 305:913–919
  • Johnson, L. N., Noble, M. E. M., and Owen, D. J.. 1996. Active and inactive protein kinases: structural basis for regulation. Cell 85:149–158
  • Johnston, M.. 1999. Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends Genet. 15:29–33
  • Kemp, B. E., Mitchelhill, K. I., Stapleton, D., Michell, B. J., Chen, Z.-P., and Witters, L. A.. 1999. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem. Sci. 24:22–25
  • Kudo, N., Barr, A. J., Barr, R. L., Desai, S., and Lopaschuk, G. D.. 1995. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem. 270:17513–17520
  • Lafont, A., Loirand, G., Pacaud, P., Vilde, F., Lemarchand, P., and Escande, D.. 1997. Vasomotor dysfunction early after exposure of normal rabbit arteries to an adenoviral vector. Hum. Gene Ther. 8:1033–1040
  • Leclerc, I., Kahn, A., and Doiron, B.. 1998. The AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex. FEBS Lett. 431:180–184
  • Mitchelhill, K. I., Stapleton, D., Gao, G., House, C., Michell, B., Kateis, F., Witters, L. A., and Kemp, B. E.. 1994. Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J. Biol. Chem. 269:2361–2364
  • Mourrieras, F., Foufelle, F., Foretz, M., Morin, J., Bouche, S., and Ferre, P.. 1997. Induction of fatty acid synthase and S14 gene expression by glucose, xylitol and dihydroxyacetone in cultured rat hepatocytes is closely correlated with glucose 6-phosphate concentrations. Biochem. J. 323:345–349
  • Muoio, D. M., Seefeld, K., Witters, L. A., and Coleman, R.. 1999. AMP-activated protein kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem. J. 338:783–791
  • Neufer, P. D., and Dohm, G. L.. 1993. Exercise induces a transient increase in transcription of the GLUT4 gene in skeletal muscle. Am. J. Physiol. 265:C1597–C1603
  • Oualikene, W., Gonin, P., and Eloit, M.. 1995. Lack of evidence of phenotypic complementation of E1A/E1B-deleted adenovirus upon superinfection by wild-type virus in the cotton rat. J. Virol. 69:6518–6524
  • Sabina, R. L., Patterson, D., and Holmes, E. W.. 1985. 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells. J. Biol. Chem. 260:6107–6114
  • Salt, I. P., Celler, J. W., Hawley, S. A., Prescott, A., Woods, A., Carling, D., and Hardie, D. G.. 1998. AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the α2 isoform. Biochem. J. 334:177–187
  • Salt, I. P., Johnson, G., Ashcroft, S. J. H., and Hardie, D. G.. 1998. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells, and may regulate insulin release. Biochem. J. 335:533–539
  • Stapleton, D., Gao, G., Mitchell, B. J., Widmer, J., Mitchelhill, K., Teh, T., House, C. M., Witters, L. A., and Kemp, B. E.. 1994. Mammalian 5′-AMP-activated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast Snf1 protein kinase. J. Biol. Chem. 269:29343–29346
  • Stein, S. C., Woods, A., Jones, N. A., Davison, M. D., and Carling, D.. 2000. The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 345:437–443
  • Sudo, Y., and Mariash, C. N.. 1994. Two glucose signalling pathways in S14 gene transcription in primary hepatocytes: a common role of protein phosphorylation. Endocrinology 134:2532–2540
  • Sullivan, J. E., Brocklehurst, K. J., Marley, A. E., Carey, F., Carling, D., and Beri, R. K.. 1994. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 353:33–36
  • Sullivan, J. E., Carey, F., Carling, D., and Beri, R. K.. 1994. Characterization of AMP-activated protein kinase in human liver using specific peptide substrates and the effects of AMP analogs on enzyme activity. Biochem. Biophys. Res. Commun. 200:1551–1556
  • Towle, H. C., Kaytor, E. N., and Shih, H. M.. 1997. Regulation of the expression of lipogenic enzymes by carbohydrates. Annu. Rev. Nutr. 17:405–433
  • Trumbly, R. J.. 1992. Glucose repression in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 6:15–21
  • Vavvas, D., Apazidis, A., Saha, A. K., Gamble, J., Patel, A., Kemp, B. E., Witters, L. A., and Ruderman, N. B.. 1997. Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J. Biol. Chem. 272:13255–13261
  • Velasco, G., Geelen, M. J. H., and Guzman, M.. 1997. Control of hepatic fatty acid oxidation by 5′-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Arch. Biochem. Biophys. 337:169–175
  • Velasco, G., Gomez del Pulgar, T., Carling, D., and Guzman, M.. 1998. Evidence that the AMP-activated protein kinase stimulates rat liver carnitine palmitoyltransferase I by phosphorylating cytoskeletal components. FEBS Lett. 439:317–320
  • Wilson, W. A., Hawley, S. A., and Hardie, D. G.. 1996. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6:1426–1434
  • Woods, A., Cheung, P. C. F., Smith, F. C., Davison, M. D., Scott, J., Beri, R. K., and Carling, D.. 1996. Characterization of AMP-activated protein kinase β subunit and γ subunit—assembly of the heterotrimeric complex in vitro. J. Biol. Chem. 271:10282–10290
  • Woods, A., Munday, M. R., Scott, J., Yang, X. L., Carlson, M., and Carling, D.. 1994. Yeast Snf1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 269:19509–19515
  • Woods, A., Salt, I., Scott, J., Hardie, D. G., and Carling, D.. 1996. The α1 and α2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett. 397:347–351

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.