42
Views
93
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Caspase-Resistant BAP31 Inhibits Fas-Mediated Apoptotic Membrane Fragmentation and Release of Cytochrome cfrom Mitochondria

, , &
Pages 6731-6740 | Received 03 May 2000, Accepted 12 Jun 2000, Published online: 28 Mar 2023

REFERENCES

  • Adachi, T., Schamel, W. W., Kim, K. M., Watanabe, T., Becker, B., Nielsen, P. J., and Reth, M.. 1996. The specificity of association of the IgD molecule with the accessory proteins BAP31/BAP29 lies in the IgD transmembrane sequence. EMBO J. 15:1534–1541
  • Alam, A., Cohen, L. Y., Aouad, S., and Sékaly, R.-P.. 1999. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in non-apoptotic cells. J. Exp. Med. 190:1879–1890
  • Annaert, W. G., Becker, B., Kistner, U., Reth, M., and Jahn, R.. 1997. Export of cellubrevin from the endoplasmic reticulum is controlled by BAP31. J. Cell Biol. 139:1397–1410
  • Boldin, M. P., Varfolomeev, E. E., Pancer, Z., Mett, I. L., Camonis, J. H., and Wallach, D.. 1995. A novel protein that interacts with the death domain of Fas/APO-1 contains a sequence motif related to the death domain. J. Biol. Chem. 270:7795–7798
  • Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D.. 1996. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85:803–815
  • Boulakia, C. A., Chen, G., Ng, F. W. H., Teodoro, J. G., Branton, P. E., Nicholson, D. W., Poirier, G. G., and Shore, G. C.. 1996. Bcl-2 and adenovirus E1B 19 kDa protein prevent E1A-induced processing of CPP32 and cleavage of poly(ADP-ribose) polymerase. Oncogene 12:529–535
  • Chinnaiyan, A. M., O'Rourke, K., Tewari, M., and Dixit, V. M.. 1995. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512
  • Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Mandrell, K., Antonsson, B., and Martinou, J.-C.. 1999. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144:891–901
  • Eskes, R., Desagher, S., Antonsson, B., and Martinou, J.-C.. 2000. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20:929–935
  • Garcia-Calvo, M., Peterson, E. P., Leiting, B., Ruel, R., Nicholson, D. W., and Thornberry, N. A.. 1998. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem. 273:32608–32613
  • Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I., and Green, D. R.. 2000. The coordinate release of cytochrome c during apoptosis is rapid, complete, and kinetically invariant. Nat. Cell Biol. 2:156–167
  • Goping, I. S., Gross, A., Lavoie, J. N., Nguyen, M., Jemmerson, R., Roth, K., Korsmeyer, S. J., and Shore, G. C.. 1998. Regulated targeting of Bax to mitochondria. J. Cell Biol. 143:207–215
  • Granville, D. J., Carthy, C. M., Jiang, H., Ng, F. W., Shore, G. C., McManus, B. M., and Hunt, D. W. C.. 1998. Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8, followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett. 437:5–10
  • Graves, J. D., Gotoh, Y., Draves, K. E., Ambrose, D., Han, D. K., Wright, M., Chernoff, J., Clark, E. A., and Krebbs, E. G.. 1998. Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J. 17:2224–2234
  • Gross, A., Yin, X.-M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., and Korsmeyer, S. J.. 1999. Caspase-cleaved Bid targets mitochondria and is required for cytochrome c release, while Bcl-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274:1156–1163
  • Kahled, A. R., Kim, K., Hofmeisterand, R., and Durum, S. K.. 1999. Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc. Natl. Acad. Sci. USA 96:14476–14481
  • Kothakota, S., Azuma, T., Reihart, C., Klippel, A., Tang, J., Chu, K., McGarry, T. J., Kirschner, M. W., Koth, K., Kwiatkowski, D. J., and Williams, L. T.. 1997. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298
  • Krajewski, S., Tanaka, S., Takayama, S., Schibler, M., Fenton, W., and Reed, J. C.. 1993. Investigation of the subcellular distribution of the Bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 53:4701–4714
  • Lee, K. K., Murakawa, M., Nishida, E., Tsubuki, S., Sakamaki, K., and Yonehara, S.. 1998. Proteolytic activation of MST/Krs, STE20-related protein kinase, by caspase during apoptosis. Oncogene 16:3029–3037
  • Lee, N., MacDonald, H., Reihard, C., Halenbeck, R., Roulston, A., Shi, T., and Williams, L. T.. 1997. Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc. Natl. Acad. Sci. USA 94:13642–13647
  • Li, H., Zhu, H., Xu, C.-J., and Yuan, J.. 1998. Cleavage of Bid by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501
  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S., Ahmad, M., Alnemri, E. S., and Wang, X.. 1997. Cytochrome c and dATP-dependent formation of an Apaf-1/caspase-9 complex initiates apoptotic protease cascade. Cell 91:479–489
  • Liu, X., Zou, H., Slaughter, C., and Wang, X.. 1997. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184
  • Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X.. 1998. Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell death receptors. Cell 94:481–490
  • Medema, J. P., Scaffidi, C., Kischkel, F. C., Shevchenko, A., Mann, M., Krammer, P. H., and Peter, M. E.. 1997. FLICE is activated by association with the CD95 death inducing signaling complex (DISC). EMBO J. 16:2794–2804
  • Mills, J. C., Stone, N. L., and Pittman, R. N.. 1999. Extranuclear apoptosis: the role of the cytoplasm in the execution phase. J. Cell Biol. 146:703–707
  • Mosser, J., Sarde, C. O., Vicaire, S., Yates, J. R., and Mandel, J. L.. 1994. A new human gene (DXS1357E) with ubiquitous expression, located at Xq28 adjacent to the adrenoleukodystrophy gene. Genomics 22:469–471
  • Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, F. C., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., and Dixit, V. M.. 1996. FLICE, a novel FADD-homologous ICE/Ced-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827
  • Nechestan, A., Smith, C. L., Hsu, Y.-T., and Youle, R. J.. 1999. Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J. 18:2330–2341
  • Ng, F. W. H., Nguyen, M., Kwan, T., Branton, P. E., Nicholson, D. W., Cromlish, J. A., and Shore, G. C.. 1997. p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J. Cell Biol. 139:327–338
  • Ng, F. W. H., and Shore, G. C.. 1998. Bcl-XL cooperatively associates with the Bap31 complex in the endoplasmic reticulum, dependent on procaspase-8 and Ced-4 adaptor. J. Biol. Chem. 139:327–338
  • Nguyen, M., Walton, P., Branton, P. E., Korsmeyer, S. J., and Shore, G. C.. 1994. Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by E1B-defective adenovirus. J. Biol. Chem. 269:16521–16524
  • Nicholson, D. W.. 1999. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6:1028–1042
  • Rudel, T., and Bokoch, G. M.. 1997. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276:1571–1574
  • Sabourin, L. A., Seale, P., Wagner, J., and Rudnicki, M. A.. 2000. Caspase 3 cleavage of the Ste20-related kinase SLK releases and activates an apoptosis-inducing kinase domain and an actin-disassembling region. Mol. Cell. Biol. 20:684–696
  • Sakahira, H., Enari, M., and Nagata, S.. 1998. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99
  • Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K.-M., Krammer, P. H., and Peter, M. E.. 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17:1675–1687
  • Scaffidi, C., Schmitz, I., Zha, J., Korsmeyer, S. J., Krammer, P. H., and Peter, M. E.. 1999. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J. Biol. Chem. 274:22532–22538
  • Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B., Casiano, C. A., Newmeyer, D. D., Wang, H.-G., Reed, J. C., Nicholson, D. W., Alnemri, E. S., Green, D. R., and Martin, S.. 1999. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases -2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol. 144:281–292
  • Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S.. 1996. Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl. Acad. Sci. USA 93:14486–14491
  • Stennicke, H. R., Jurgensmeier, J. M., Shin, H., Deveraux, Q., Wolf, B. B., Yang, X., Zhou, Q., Ellerby, H. M., Bredesen, D., Green, D. R., Reed, J. C., Froelich, C. J., and Salvesen, G. S.. 1998. Pro-caspase-3 is a major physiological target of caspase-8. J. Biol. Chem. 273:27084–27090
  • Strehler, E. E., Strehler-Page, M. A., Perriard, J. C., Periasamy, M., and Nadal-Ginard, B.. 1986. Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. J. Mol. Biol. 190:291–317
  • Vander Heiden, V. G., and Thompson, C. B.. 1999. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis. Nat. Cell Biol. 1:E209–E216
  • Varfolomeev, E. E., Schuchman, M., Luria, V., Chiannilkulchai, N., Beckmann, J. S., Mett, I. L., Rebrikov, D., Brodianski, V. M., Kemper, O. C., Kollet, O., Lapidot, T., Soffer, D., Sobe, T., Abraham, K. B., Goncharov, T., Holtmann, H., Lonia, P., and Wallach, D.. 1998. Targeted disruption of the mouse caspase-8 gene ablates cell death induction by the TNF receptors, Fas/APO-1, and DR3 and is lethal prenatally. Immunity 9:267–276
  • Wang, K., Yin, X.-M., Chao, D. T., Milliman, C. L., and Korsmeyer, S. J.. 1996. BID: a novel BH3 domain-only death agonist. Genes Dev. 10:2859–2869
  • Wolf, B. B., and Green, D. R.. 1999. Suicidal tendencies: apoptotic cell death by caspase family proteases. J. Biol. Chem. 274:20049–20052
  • Yin, X.-M., Wang, K., Gross, A., Zhao, Y., Zinlle, S., Klocke, B., Roth, K. A., and Korsmeyer, S. J.. 1999. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:886–891
  • Zheng, T. S., Hunot, S., Kuida, K., and Flavell, R. A.. 1999. Caspase knockouts: matters of life and death. Cell Death Differ. 6:1043–1053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.