68
Views
522
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Glucocorticoid Receptor Recruitment of Histone Deacetylase 2 Inhibits Interleukin-1β-Induced Histone H4 Acetylation on Lysines 8 and 12

, &
Pages 6891-6903 | Received 13 Dec 1999, Accepted 30 May 2000, Published online: 28 Mar 2023

REFERENCES

  • Barnes, P. J.. 1995. Anti-inflammatory mechanisms of glucocorticoids. Biochem. Soc. Trans. 23:940–945
  • Barnes, P. J., and Adcock, I. M.. 1998. Transcription factors and asthma. Eur. Respir. J. 12:221–234
  • Beato, M.. 1996. Chromatin structure and the regulation of gene expression: remodeling at the MMTV promoter. J. Mol. Med. 74:711–724
  • Beato, M., and Eisfeld, K.. 1997. Transcription factor access to chromatin. Nucleic Acids Res. 25:3559–3563
  • Boyes, J., Byfield, P., Nakatani, Y., and Ogryzko, V.. 1998. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396:594–598
  • Caelles, C., Gonzalez-Sancho, J. M., and Munoz, A.. 1997. Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev. 11:3351–3364
  • Chen, H., Lin, R. J., Xie, W., Wilpitz, D., and Evans, R. M.. 1999. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98:675–686
  • Espinos, E., le Pomi, V. T., and Weber, M. J.. 1999. Cooperation between phosphorylation and acetylation processes in transcriptional control. Mol. Cell. Biol. 19:3474–3484
  • Flower, R. J., and Rothwell, N. J.. 1994. Lipocortin-1: cellular mechanisms and clinical relevance. Trends. Pharmacol. Sci. 15:71–76
  • Fontes, J. D., Kanazawa, S., Jean, D., and Peterlin, B. M.. 1999. Interactions between the class II transactivator and CREB binding protein increase transcription of major histocompatibility complex class II genes. Mol. Cell. Biol. 19:941–947
  • Gerritsen, M. E., Williams, A. J., Neish, A. S., Moore, S., Shi, Y., and Collins, T.. 1997. CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA 94:2927–2932
  • Gu, W., and Roeder, R. G.. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606
  • Hecht, A., and Grunstein, M.. 1999. Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol. 304:399–414
  • Imhof, A., and Wolffe, A. P.. 1998. Transcription: gene control by targeted histone acetylation. Curr. Biol. 8:R422–R424
  • Jonat, C., Rahmsdorf, H. J., Park, K. K., Cato, A. C., Gebel, S., Ponta, H., and Herrlich, P.. 1990. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62:1189–1204
  • Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S. C., Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G.. 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414
  • Kimura, A., and Horikoshi, M.. 1998. How do histone acetyltransferases select lysine residues in core histones? FEBS Lett. 431:131–133
  • Kolle, D., Brosch, G., Lechner, T., Lusser, A., and Loidl, P.. 1998. Biochemical methods for analysis of histone deacetylases. Methods 15:323–331
  • Korzus, E., Torchia, J., Rose, D. W., Xu, L., Kurokawa, R., McInerney, E. M., Mullen, T. M., Glass, C. K., and Rosenfeld, M. G.. 1998. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279:703–707
  • Lee, D. Y., Hayes, J. J., Pruss, D., and Wolffe, A. P.. 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84
  • Levine, S. J., Benfield, T., and Shelhamer, J. H.. 1996. Corticosteroids induce intracellular interleukin-1 receptor antagonist type I expression by a human airway epithelial cell line. Am. J. Respir. Cell Mol. Biol. 15:245–251
  • Martinez-Balbas, M. A., Bannister, A. J., Martin, K., Haus-Seuffert, P., Meisterernst, M., and Kouzarides, T.. 1998. The acetyltransferase activity of CBP stimulates transcription. EMBO J. 17:2886–2893
  • Nakajima, H., Kim, Y. B., Terano, H., Yoshida, M., and Horinouchi, S.. 1998. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res. 241:126–133
  • Nightingale, K. P., Wellinger, R. E., Sogo, J. M., and Becker, P. B.. 1998. Histone acetylation facilitates RNA polymerase II transcription of the Drosophila hsp26 gene in chromatin. EMBO J. 17:2865–2876
  • Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y.. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959
  • Perkins, N. D., Felzien, L. K., Betts, J. C., Leung, K., Beach, D. H., and Nabel, G. J.. 1997. Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275:523–527
  • Perry, M., and Chalkley, R.. 1982. Histone acetylation increases the solubility of chromatin and occurs sequentially over most of the chromatin. A novel model for the biological role of histone acetylation. J. Biol. Chem. 257:7336–7347
  • Plesko, M. M., Hargrove, J. L., Granner, D. K., and Chalkley, R.. 1983. Inhibition by sodium butyrate of enzyme induction by glucocorticoids and dibutyryl cyclic AMP. A role for the rapid form of histone acetylation. J. Biol. Chem. 258:13738–13744
  • Ray, A., and Prefontaine, K. E.. 1994. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 91:752–756
  • Rider, L. G., Hirasawa, N., Santini, F., and Beaven, M. A.. 1996. Activation of the mitogen-activated protein kinase cascade is suppressed by low concentrations of dexamethasone in mast cells. J. Immunol. 157:2374–2380
  • Rundlett, S. E., Carmen, A. A., Suka, N., Turner, B. M., and Grunstein, M.. 1998. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835
  • Sallenave, J. M., Shulmann, J., Crossley, J., Jordana, M., and Gauldie, J.. 1994. Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes. Am. J. Respir. Cell Mol. Biol. 11:733–741
  • Schiltz, R. L., Mizzen, C. A., Vassilev, A., Cook, R. G., Allis, C. D., and Nakatani, Y.. 1999. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J. Biol. Chem. 274:1189–1192
  • Sheppard, K. A., Phelps, K. M., Williams, A. J., Thanos, D., Glass, C. K., Rosenfeld, M. G., Gerritsen, M. E., and Collins, T.. 1998. Nuclear integration of glucocorticoid receptor and nuclear factor-kappaB signaling by CREB-binding protein and steroid receptor coactivator-1. J. Biol. Chem. 273:29291–29294
  • Sowa, Y., Orita, T., Hiranabe-Minamikawa, S., Nakano, K., Mizuno, T., Nomura, H., and Sakai, T.. 1999. Histone deacetylase inhibitor activates the p21/WAF1/Cip1 gene promoter through the Sp1 sites. Ann. N. Y. Acad. Sci. 886:195–199
  • Swantek, J. L., Cobb, M. H., and Geppert, T. D.. 1997. Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol. Cell. Biol. 17:6274–6282
  • Truss, M., and Beato, M.. 1993. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocrinol. Rev. 14:459–479
  • Turner, B. M., and Fellows, G.. 1989. Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179:131–139
  • Turner, B. M., O'Neill, L. P., and Allan, I. M.. 1989. Histone H4 acetylation in human cells. Frequency of acetylation at different sites defined by immunolabeling with site-specific antibodies. FEBS Lett. 253:141–145
  • Ura, K., Kurumizaka, H., Dimitrov, S., Almouzni, G., and Wolffe, A. P.. 1997. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J. 16:2096–2107
  • Vanden Berghe, W., De Bosscher, K., Boone, E., Plaisance, S., and Haegeman, G.. 1999. The nuclear factor-kappaB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J. Biol. Chem. 274:32091–32098
  • Wolffe, A. P.. 1997. Transcriptional control. Sinful repression. Nature 387:16–17
  • Workman, J. L., and Buchman, A. R.. 1993. Multiple functions of nucleosomes and regulatory factors in transcription. Trends. Biochem. Sci. 18:90–95
  • Wu, R. S., Panusz, H. T., Hatch, C. L., and Bonner, W. M.. 1986. Histones and their modifications. CRC Crit. Rev. Biochem. 20:201–263
  • Yoshida, M., Horinouchi, S., and Beppu, T.. 1995. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17:423–430
  • Yoshida, M., Kijima, M., Akita, M., and Beppu, T.. 1990. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265:17174–17179

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.