26
Views
115
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The N Terminus of the Centromere H3-Like Protein Cse4p Performs an Essential Function Distinct from That of the Histone Fold Domain

, , , , &
Pages 7037-7048 | Received 29 Feb 2000, Accepted 30 May 2000, Published online: 28 Mar 2023

REFERENCES

  • Anderson, M. T., Tjioe, I. M., Lorincz, M. C., Parks, D. R., Herzenberg, L. A., and Nolan, G. P.. 1996. Simultaneous fluorescence-activated cell sorter analysis of two distinct transcriptional elements within a single cell using engineered green fluorescent proteins. Proc. Natl. Acad. Sci. USA 93:8508–8511
  • Baker, R. E., Fitzgerald-Hayes, M., and O'Brien, T. C.. 1989. Purification of the yeast centromere binding protein CP1 and a mutational analysis of its binding site. J. Biol. Chem. 264:10843–10850
  • Baker, R. E., Harris, K., and Zhang, K.. 1998. Mutations synthetically lethal with cep1 target S. cerevisiae kinetochore components. Genetics 149:73–85
  • Baker, R. E., and Masison, D. C.. 1990. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1. Mol. Cell. Biol. 10:2458–2467
  • Basrai, M. A., Kingsbury, J., Koshland, D., Spencer, F., and Hieter, P.. 1996. Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2838–2847
  • Bloom, K. S., and Carbon, J.. 1982. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell 29:305–317
  • Buchwitz, B. J., Ahmad, K., Moore, L. L., Roth, M. B., and Henikoff, S.. 1999. A histone H3-like protein in C. elegans. Nature 401:547–548
  • Cai, M., and Davis, R. W.. 1989. Purification of a yeast centromere-binding protein that is able to distinguish single base-pair mutations in its recognition site. Mol. Cell. Biol. 9:2544–2550
  • Cai, M., and Davis, R. W.. 1990. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61:437–446
  • Carlson, M., and Botstein, D.. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154
  • Cumberledge, S., and Carbon, J.. 1987. Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics 117:203–212
  • Fitzgerald-Hayes, M., Clarke, L., and Carbon, J.. 1982. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235–244
  • Fleig, U., Beinhauer, J. D., and Hegemann, J. H.. 1995. Functional selection for the centromere DNA from yeast chromosome VII. Nucleic Acids Res. 23:922–924
  • Gaudet, A., and Fitzgerald-Hayes, M.. 1987. Alterations in the adenine-plus-thymine-rich region of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:68–75
  • Guacci, V., Hogan, E., and Koshland, D.. 1997. Centromere position in budding yeast: evidence for anaphase A. Mol. Biol. Cell 8:957–972
  • Hegemann, J. H., Shero, J. H., Cottarel, G., Philippsen, P., and Hieter, P.. 1988. Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2523–2535
  • Henikoff, S., Ahmad, K., Platero, J. S., and van Steensel, B.. 2000. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA 97:716–721
  • Hieter, P., Mann, C., Snyder, M., and Davis, R.. 1985. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40:381–392
  • Hyland, K. M., Kingsbury, J., Koshland, D., and Hieter, P.. 1999. Ctf19p: a novel kinetochore protein in Saccharomyces cerevisiae and a potential link between the kinetochore and mitotic spindle. J. Cell Biol. 145:15–28
  • James, P., Halladay, J., and Craig, E. A.. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436
  • Jehn, B., Niedenthal, R., and Hegemann, J. H.. 1991. In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation. Mol. Cell. Biol. 11:5212–5221
  • Kaufman, P. D., Kobayashi, R., and Stillman, B.. 1997. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 11:345–357
  • Keith, K. C., Baker, R. E., Chen, Y., Harris, K., Stoler, S., and Fitzgerald-Hayes, M.. 1999. Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from H3. Mol. Cell. Biol. 19:6130–6139
  • Kent, N. A., Tsang, J. S. H., Crowther, D. J., and Mellor, J.. 1994. Chromatin structure modulation in Saccharomyces cerevisiae by centromere and promoter factor I. Mol. Cell. Biol. 14:5229–5241
  • Kingsbury, J., and Koshland, D.. 1991. Centromere-dependent binding of yeast minichromosomes to microtubules in vitro. Cell 66:483–495
  • Lechner, J., and Carbon, J.. 1991. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64:717–725
  • Lechner, J., and Ortiz, J.. 1996. The Saccharomyces cerevisiae kinetochore. FEBS Lett. 389:70–74
  • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J.. 1997. Crystal structure of the nucleosome core particle at 2.8A resolution. Nature 389:251–260
  • Maine, G. T., Sinha, P., and Tye, B. K.. 1984. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106:365–385
  • Mann, R. K., and Grunstein, M.. 1992. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. EMBO 11:3297–3306
  • McGrew, J., Diehl, B., and Fitzgerald-Hayes, M.. 1986. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:530–538
  • Mellor, J., Jiang, W., Funk, M., Rathjen, J., Barnes, C. A., Hinz, T., Hegemann, J. H., and Philippsen, P.. 1990. CPF1, a yeast protein which functions in centromeres and promoters. EMBO J. 9:4017–4026
  • Meluh, P., and Koshland, D.. 1997. Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev. 11:3401–3412
  • Meluh, P. B., and Koshland, D.. 1995. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein, CENP-C. Mol. Biol. Cell 6:793–807
  • Meluh, P. B., Yang, P., Glowczewski, L., Koshland, D., and Smith, M. M.. 1998. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94:607–613
  • Niedenthal, R. K., Sen-Gupta, M., Wilmen, A., and Hegemann, J. H.. 1993. Cpf1 protein induced bending of yeast centromere DNA element I. Nucleic Acids Res. 21:4726–4733
  • Ortiz, J., Stemmann, O., Rank, S., and Lechner, J.. 1999. A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 13:1140–1155
  • Poddar, A., Roy, N., and Sinha, P.. 1999. MCM21 and MCM22, two novel genes of the yeast Saccharomyces cerevisiae are required for chromosome transmission. Mol. Microbiol. 31:349–360
  • Rose, M. D., Winston, F., and Hieter, P.. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Sherman, F., Fink, G., and Hicks, J. B.. 1983. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Smith, M. M., Yang, P., Santisteban, M. S., Boone, P. W., Goldstein, A. T., and Megee, P. C.. 1996. A novel histone H4 mutant defective for nuclear division and mitotic chromosome transmission. Mol. Cell. Biol. 16:1017–1026
  • Stirling, D. A., Petrie, A., Pulford, D. J., Paterson, D. T., and Stark, M. J.. 1992. Protein A-calmodulin fusions: a novel approach for investigating calmodulin function in yeast. Mol. Microbiol. 6:703–713
  • Stoler, S., Keith, K. C., Curnick, K. E., and Fitzgerald-Hayes, M.. 1995. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9:573–586
  • Strahl-Bolsinger, S., Hecht, A., Luo, K., and Grunstein, M.. 1997. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11:83–93
  • Sullivan, K. F., Hechenberger, M., and Masri, K.. 1994. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127:581–592
  • Tanaka, T., Cosma, M. P., Wirth, K., and Nasmyth, K.. 1999. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98:847–858
  • Van Hooser, A., Goodrich, D. W., Allis, C. D., Brinkley, B. R., and Mancini, M. A.. 1998. Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J. Cell Sci. 111:3497–3506
  • Van Hooser, A. A., Mancini, M. A., Allis, C. D., Sullivan, K. F., and Brinkley, B. R.. 1999. The mammalian centromere: structural domains and the attenuation of chromatin modeling. FASEB J. 13 (Suppl. 2):S216–S220
  • Wolffe, A. P., and Hayes, J. J.. 1999. Chromatin disruption and modification. Nucleic Acids Res. 27:711–720

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.