42
Views
208
CrossRef citations to date
0
Altmetric
Cell Growth and Development

New Role for Shc in Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway

, , , , , & show all
Pages 7109-7120 | Received 20 Apr 2000, Accepted 12 Jun 2000, Published online: 28 Mar 2023

REFERENCES

  • Bachmaier, K., Krawczyk, C., Kozieradzki, I., Kong, Y. Y., Sasaki, T., Oliveira-dos-Santos, A., Mariathasan, S., Bouchard, D., Wakeham, A., Itie, A., Le, J., Ohashi, P. S., Sarosi, I., Nishina, H., Lipkowitz, S., and Penninger, J. M.. 2000. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403:211–216
  • Backer, J., Myers, M.Jr., Shoelson, S., Chin, D., Sun, X.-J., Miralpeix, M., Hu, P., Margolis, B., Skolnik, E., Schlessinger, J., and White, M.. 1992. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 11:3469–3479
  • Barford, D., and Neel, B. G.. 1998. Revealing mechanisms for SH2 domain-mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 6:249–254
  • Baxter, R. M., Cohen, P., Obermeier, A., Ullrich, A., Downes, C. P., and Doza, Y. N.. 1995. Phosphotyrosine residues in the nerve-growth-factor receptor (Trk-A): their role in the activation of inositolphospholipid metabolism and protein kinase cascades in phaeochromocytoma (PC12) cells. Eur. J. Biochem. 234:84–91
  • Bone, H., Dechert, U., Jirik, F., Schrader, J. W., and Welham, M. J.. 1997. SHP1 and SHP2 protein-tyrosine phosphatases associate with betac after interleukin-3-induced receptor tyrosine phosphorylation: identification of potential binding sites and substrates. J. Biol. Chem. 272:14470–14476
  • Bone, H., and Welham, M. J.. 2000. Shc associates with the IL3 receptor b subunit, SHIP and Gab2 following IL-3 stimulation: contribution of Shc PTB and SH2 domains. Cell. Signaling 12:183–194
  • Bonfini, L., Migliaccio, E., Pelicci, G., Lanfrancone, L., and Pelicci, P. G.. 1996. Not all Shc's roads lead to Ras. Trends Biochem. Sci. 21:257–261
  • Brennan, P., Babbage, J. W., Burgering, B. M. T., Groner, B., Reif, K. I., and Cantrell, D. A.. 1997. Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7:679–689k.
  • Carpenter, C. L., Auger, K. R., Chanudhuri, M., Yoakim, M., Schaffhausen, B., Shoelson, S., and Cantley, L. C.. 1993. Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J. Biol. Chem. 268:9478–9483
  • Carpenter, C. L., Duckworth, B. C., Auger, K. R., Cohen, B., Schaffhausen, B. S., and Cantley, L. C.. 1990. Purification and characterization of phosphoinositide 3-kinase from rat liver. J. Biol. Chem. 265:19704–19711
  • Chatterjee-Kishore, I., Akker, F. V., and Stark, G. R.. 2000. Association of STATs with relatives and friends. Trends Cell Biol. 10:106–111
  • Craddock, B. L., Orchiston, E. A., Hinton, H. J., and Welham, M. J.. 1999. Dissociation of apoptosis from proliferation, protein kinase B activation, and BAD phosphorylation in interleukin-3-mediated phosphoinositide 3-kinase signaling. J. Biol. Chem. 274:10633–10640
  • Craddock, B. L., and Welham, M. J.. 1997. Interleukin-3 induces association of the protein-tyrosine phosphatase SHP2 and phosphatidylinositol 3-kinase with a 100-kDa tyrosine-phosphorylated protein in hemopoietic cells. J. Biol. Chem. 272:29281–29289
  • Dijkers, P. F., van Dijk, T. B., de Groot, R. P., Raaijmakers, J. A. M., Lammers, J.-W. J., Koenderman, L., and Coffer, P. J.. 1999. Regulation and function of protein kinase B and MAP kinase activation by the IL-5/GM-CSF/IL-3 receptor. Oncogene 18:3334–3342
  • Downward, J.. 1998. Ras signaling and apoptosis. Curr. Opin. Genet. Dev. 8:49–54
  • Franke, T., Kaplan, D., and Cantley, L.. 1997. PI3K: downstream AKTion blocks apoptosis. Cell 88:435–437
  • Gesbert, F., Guenzi, C., and Bertoglio, J.. 1998. A new tyrosine-phosphorylated 97-kDa adaptor protein mediates interleukin-2-induced association of SHP-2 with p85-phosphatidylinositol 3-kinase in human T lymphocytes. J. Biol. Chem. 273:18273–18281
  • Gotoh, N., Tojo, A., and Shibuya, M.. 1996. A novel pathway from phosphorylation of tyrosine residues 239/240 of Shc, contributing to suppress apoptosis by IL-3. EMBO J. 15:6197–6204
  • Gu, H., Griffin, J. D., and Neel, B. G.. 1997. Characterization of two SHP-2-associated binding proteins and potential substrates in hematopoietic cells. J. Biol. Chem. 272:16421–16430
  • Gu, H., Pratt, J. C., Burakoff, S. J., and Neel, B. G.. 1998. Cloning of p97/Gab2, the major SHP-2 binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol. Cell 2:729–740
  • Hallberg, B., Ashcroft, M., Loeb, D. M., Kaplan, D. R., and Downward, J.. 1998. Nerve growth factor induced stimulation of Ras requires Trk interaction with Shc but does not involve phosphoinositide 3-OH kinase. Oncogene 17:691–697
  • Holgado-Madruga, M., Emlet, D. R., Moscatello, D. K., Godwin, A. K., and Wong, A. J.. 1996. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 379:560–564
  • Holgado-Madruga, M., Moscatello, D. K., Emlet, D. R., Dieterich, R., and Wong, A. J.. 1997. Grb2-associated binder-1 mediates phosphstidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc. Natl. Acad. Sci. USA 94:12419–12424
  • Hunter, S., Burton, E. A., Wu, S. C., and Anderson, S. M.. 1999. Fyn associates with Cbl and phosphorylates tyrosine 731 in Cbl, a binding site for phosphatidylinositol 3-kinase. J. Biol. Chem. 274:2097–2106
  • Ihle, J. N., Stravapodis, D., Parganas, E., Thierfelder, W., Feng, J., Wang, D., and Teglund, S.. 1998. The roles of Jaks and Stats in cytokine signaling. Cancer J. Sci. Am. 4:S84–91
  • Ihle, J. N., Thierflder, W., Teglund, S., Stravapodis, D., Wang, D., Feng, J., and Parganas, E.. 1998. Signaling by the cytokine receptor superfamily. Ann. N.Y. Acad. Sci. 865:1–9
  • Ingham, R. J., Holgado-Madruga, M., Siu, C., Wong, A. J., and Gold, M. R.. 1998. The Gab1 protein is a docking site for multiple proteins involved in signaling by the B cell antigen receptor. J. Biol. Chem. 273:30630–30637
  • Itoh, T., Liu, R., Yokota, T., Arai, K.-I., and Watanabe, S.. 1998. Definition of the role of tyrosine residues of the common β subunit regulating multiple signaling pathways of granulocyte-macrophage colony-stimulating factor receptor. Mol. Cell. Biol. 18:742–752
  • Itoh, T., Muto, A., Watannabe, S., Miyajima, A., Yokota, T., and Arai, K.. 1996. Granulocyte-macrophage colony-stimulating factor provokes ras activation and transcription of c-fos through different modes of signaling. J. Biol. Chem. 271:7587–7592
  • Joazeiro, C. A., Wing, S. S., Huang, H., Leverson, J. D., Hunter, T., and Liu, Y. C.. 1999. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–312
  • Klucher, K. M., Lopez, D. V., and Daley, G. Q.. 1998. Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression. Blood 91:3927–3934
  • Lemmon, M. A., Ferguson, K. M., and Schlessinger, J.. 1996. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85:621–624
  • Levkowitz, G., Waterman, H., Ettenberg, S. A., Katz, M., Tsygankov, A. Y., Alroy, I., Lavi, S., Iwai, K., Reiss, Y., Ciechanover, A., Lipkowitz, S., and Yarden, Y.. 1999. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4:1029–1040
  • Lioubin, M. N., Algate, P. A., Tsai, S., Carlberg, K., Aebersold, R., and Rohrschneider, L. R.. 1996. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev. 10:1084–1095
  • Lord, J. D., McIntosh, B. C., Greeberg, P. D., and Nelson, B. H.. 1998. The IL-2 receptor promotes proliferation, bcl-2 and bcl-x induction, but not cell viability through the adapter molecule. Shc. J. Immunol. 161:4627–4633
  • Lupher, M. L. J., Andoniou, C. E., Bonita, D., Miyake, S., and Band, H.. 1998. The c-Cbl oncoprotein. Int. J. Biochem. Cell. Biol. 30:439–444
  • Maroun, C. R., Holgado-Madruga, M., Royal, I., Naujokas, M. A., Fournier, T. M., Wong, A. J., and Park, M.. 1999. The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol. Cell. Biol. 19:1784–1799
  • Maroun, C. R., Moscatello, D. K., Naujokas, M. A., Holgado-Madruga, M., Wong, A. J., and Park, M.. 1999. A conserved inositol phospholipid binding site within the Pleckstrin homology domain of the Gab1 docking protein is required for epithelial morphogenesis. J. Biol. Chem. 274:31719–31726
  • Murphy, M. A., Schnall, R. G., Venter, D. J., Barnett, L., Bertoncello, I., Thien, C. B., Langdon, W. Y., and Bowtell, D. D.. 1998. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol. Cell. Biol. 18:4872–4882
  • Naramura, M., Kole, H. K., Hu, R. J., and Gu, H.. 1998. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl. Acad. Sci. USA 95:15547–15552
  • Neel, B. G., and Tonks, N. K.. 1997. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell Biol. 9:193–204
  • Nguyen, L., Holgado-Madruga, M., Maroun, C., Fixman, E. D., Kamikura, D., Fournier, T., Charest, A., Tremblay, M. L., Wong, A. J., and Park, M.. 1997. Association of the multisubstrate docking protein Gab1 with the hepatocyte growth factor receptor requires a functional Grb2 binding site involving tyrosine 1356. J. Biol. Chem. 272:20811–20819
  • Nishida, K., Yoshida, Y., Itoh, M., Fukuda, T., Ohtani, T., Shirogane, T., Atsumi, T., Takahashi-Tezuka, M., Ishihara, K., Hibi, M., and Hirano, T.. 1999. Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors. Blood 93:1809–1816
  • Okuda, K., Foster, R., and Griffin, J. D.. 1999. Signaling domains of the βc chain of the GM-CSF/IL-3/IL-5 receptor. Ann. N.Y. Acad. Sci. 872:305–312
  • Okuda, K., Smith, L., Griffin, J. D., and Foster, R.. 1997. Signaling functions of the tyrosine residues in the bc chain of the granulocyte-macrophage colony-stimulating factor receptor. Blood 90:43759–4766
  • Pratt, J. C., Weiss, M., Sieff, C. A., Shoelson, S. E., Burakoff, S. J., and Ravichandran, K. S.. 1996. Evidence for a physical association between the Shc-PTB domain and the beta c chain of the granulocyte-macrophage colony-stimulating factor receptor. J. Biol. Chem. 271:12137–12140
  • Rameh, L. E., Arvidsson, A., Carraway, K. L., Couvillion, A. D., Rathbun, G., Crompton, A., VanRenterghem, Czech, M. P., Ravichandran, K. S., Burakoff, S. J., Wang, D.-S., Chen, C.-S., and Cantley, L. C.. 1997. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J. Biol. Chem. 272:22059–22066
  • Ravichandran, K. S., Igras, V., Shoelson, S. E., Fesik, S. W., and Burakoff, S. J.. 1996. Evidence for a role for the phosphotyrosine-binding domain of Shc in interleukin 2 signaling. Proc. Natl. Acad. Sci. USA 93:5275–5280
  • Rodrigues, G. A., Falasca, M., Zhang, Z., Ong, S. H., and Schlessinger, J.. 2000. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol. Cell. Biol. 20:1448–1459
  • Roshan, B., Kjelsberg, C., Spokes, K., Aldred, A., Crovello, C. S., and Cantley, L. G.. 1999. Activated ERK2 interacts with and phosphorylates the docking protein GAB1. J. Biol. Chem. 274:36362–36368
  • Scheid, M. P., Lauener, R. W., and Duronio, V.. 1995. Role of phosphatidylinositol 3-OH-kinase activity in the inhibition of apoptosis in haemopoietic cells: phosphatidylnositol 3-OH-kinase inhibitors reveal a difference in signalling between interleukin-3 and granulocyte-macrophage colony stimulating factor. Biochem. J. 312:159–162
  • Seger, R., and Krebs, E. G.. 1995. The MAPK signaling cascade. FASEB J. 9:726–735
  • Segouffin-Cariou, C., and Billaud, M.. 2000. Transforming ability of MEN2A-RET requires activation of the phosphatidylinositol 3-kinase/AKT signaling pathway. J. Biol. Chem. 275:3568–3576
  • Songyang, Z., Baltimore, D., Cantley, C. C., Kaplan, D. R., and Franke, T. F.. 1997. Interleukin 3-dependent survival by the Akt protein kinase. Proc. Natl. Acad. Sci. USA 94:11345–11350
  • Toker, A., and Cantley, L. C.. 1997. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387:673–676
  • Truitt, K. E., Mills, G. B., Turck, C. W., and Imboden, J. B.. 1994. SH2-dependent association of phosphatidylinositol 3′-kinase 85-kDa regulatory subunit with the interleukin-2 receptor beta chain. J. Biol. Chem. 269:5937–5943
  • Van Parijs, L., Refaeli, Y., Lord, J. D., Nelson, B. H., Abbas, A. K., and Baltimore, D.. 1999. Uncoupling Il-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 11:281–288
  • Van Vactor, D., O'Reilly, A. O., and Neel, B. G.. 1998. Genetic analysis of protein tyrosine phosphatases. Curr. Opin. Genet. Dev. 8:112–126
  • Wang, J., Auger, K. R., Jarvis, L., Shi, Y., and Roberts, T. M.. 1995. Direct association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase. J. Biol. Chem. 270:12774–12780
  • Wickrema, A., Uddin, S., Sharma, A., Chen, F., Alsayed, Y., Ahmad, S., Sawyer, S. T., Krystal, G., Yi, T., Nishada, K., Hibi, M., Hirano, T., and Platanias, L. C.. 1999. Engagement of Gab1 and Gab2 in erythropoietin signaling. J. Biol. Chem. 274:24469–24474
  • Xu, X., Yi, T., Tang, B., and Lambeth, J.. 1998. Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2. Oncogene 16:1561–1569
  • Yoon, C. H., Lee, J., Jongeward, G. D., and Sternberg, P. W.. 1995. Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science 269:1102–1105
  • Zhao, C., Yu, D., Shen, R., and Feng, G.. 1999. Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1. J. Biol. Chem. 274:19649–19654

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.