14
Views
155
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Functional Consequences of a Polymorphism Affecting NF-κB p50-p50 Binding to the TNF Promoter Region

, , , , , & show all
Pages 9113-9119 | Received 22 Aug 2000, Accepted 20 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Baer, M., Dillner, A., Schwartz, R. C., Sedon, C., Nedospasov, S., and Johnson, P. F.. 1998. Tumor necrosis factor alpha transcription in macrophages is attenuated by an autocrine factor that preferentially induces NF-κB p50. Mol. Cell. Biol. 18:5678–5689
  • Baldwin, A. S.Jr.. 1996. The NF-κB and IB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683
  • Chen, F. E., Huang, D. B., Chen, Y. Q., and Ghosh, G.. 1998. Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA. Nature 391:410–413
  • Elliott, M. J., Maini, R. N., Feldmann, M., Long-Fox, A., Charles, P., Bijl, H., and Woody, J. N.. 1994. Repeated therapy with monoclonal antibody to tumour necrosis factor alpha (cA2) in patients with rheumatoid arthritis. Lancet 344:1125–1127
  • Foxwell, B., Browne, K., Bondeson, J., Clarke, C., de Martin, R., Brennan, F., and Feldmann, M.. 1998. Efficient adenoviral infection with IB alpha reveals that macrophage tumor necrosis factor alpha production in rheumatoid arthritis is NF-κB dependent. Proc. Natl. Acad. Sci. USA 95:8211–8215
  • Han, J., Brown, T., and Beutler, B.. 1990. Endotoxin-responsive sequences control cachetin/tumor necrosis factor biosynthesis at the translational level. J. Exp. Med. 171:465–475 (Erratum, 171:971–972.)
  • He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B.. 1998. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95:2509–2514
  • Higuchi, T., Seki, N., Kamizono, S., Yamada, A., Kimura, A., Kato, H., and Itoh, K.. 1998. Polymorphism of the 5′-flanking region of the human tumor necrosis factor (TNF)-alpha gene in Japanese. Tissue Antigens 51:605–612
  • Ishikawa, H., Claudio, E., Dambach, D., Raventos-Suarez, C., Ryan, C., and Bravo, R.. 1998. Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p)105 precursor (NF-κB1) but expressing p50. J. Exp. Med. 187:985–996
  • Kastenbauer, S., and Ziegler-Heitbrock, H. W. L.. 1999. NF-κB1 (p50) is upregulated in lipopolysaccharide tolerance and can block tumor necrosis factor gene expression. Infect. Immun. 67:1553–1559
  • Kroeger, K. M., Carville, K. S., and Abraham, L. J.. 1997. The −308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol. Immunol. 34:391–399
  • Kunsch, C., Ruben, S. M., and Rosen, C. A.. 1992. Selection of optimal κB/Rel DNA-binding motifs: interaction of both subunits of NF-κB with DNA is required for transcriptional activation. Mol. Cell. Biol. 12:4412–4421
  • Kuprash, D. V., Udalova, I. A., Turetskaya, R. L., Rice, N. R., and Nedospasov, S. A.. 1995. Conserved kappa B element located downstream of the tumor necrosis factor alpha gene: distinct NF-κB binding pattern and enhancer activity in LPS activated murine macrophages. Oncogene 11:97–106
  • Lehming, N., Thanos, D., Brickman, J. M., Ma, J., Maniatis, T., and Ptashne, M.. 1994. An HMG-like protein that can switch a transcriptional activator to a repressor. Nature 371:175–179
  • Perkins, N. D., Schmid, R. M., Duckett, C. S., Leung, K., Rice, N. R., and Nabel, G. J.. 1992. Distinct combinations of NF-κB subunits determine the specificity of transcriptional activation. Proc. Natl. Acad. Sci. USA 89:1529–1533
  • Plaksin, D., Baeuerle, P. A., and Eisenbach, L.. 1993. KBF1 (p50 NF-κB homodimer) acts as a repressor of H-2Kb gene expression in metastatic tumor cells. J. Exp. Med. 177:1651–1662
  • Schmitz, M. L., and Baeuerle, P. A.. 1991. The p65 subunit is responsible for the strong transcription activating potential of NF-κB. EMBO J. 10:3805–3817
  • Schreiber, E., Matthias, P., Muller, M. M., and Schaffner, W.. 1989. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 17: 6419
  • Sha, W. C., Liou, H. C., Tuomanen, E. I., and Baltimore, D.. 1995. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80:321–330
  • Shaw, G., and Kamen, R.. 1986. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667
  • Skoog, T., Hooft, F. M., Kallin, B., Jovinge, S., Boquist, S., Nilsson, J., Eriksson, P., and Hamsten, A.. 1999. A common functional polymorphism (C→A substitution at position −863) in the promoter region of the tumour necrosis factor-alpha (TNF-alpha) gene associated with reduced circulating levels of TNF-alpha. Hum. Mol. Genet. 8:1443–1449
  • Stuber, F., Udalova, I. A., Book, M., Drutskaya, L. N., Kuprash, D. V., Turetskaya, R. L., Schade, F. U., and Nedospasov, S. A.. 1995. −308 tumor necrosis factor (TNF) polymorphism is not associated with survival in severe sepsis and is unrelated to lipopolysaccharide inducibility of the human TNF promoter. J. Inflamm. 46:42–50
  • Thanos, D., and Maniatis, T.. 1995. Identification of the rel family members required for virus induction of the human beta interferon gene. Mol. Cell. Biol. 15:152–164
  • Thanos, D., and Maniatis, T.. 1995. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83:1091–1100
  • Udalova, I. A., Knight, J. C., Vidal, V., Nedospasov, S. A., and Kwiatkowski, D.. 1998. Complex NF-κB interactions at the distal tumor necrosis factor promoter region in human monocytes. J. Biol. Chem. 273:21178–21186
  • Uglialoro, A. M., Turbay, D., Pesavento, P. A., Delgado, J. C., McKenzie, F. E., Gribben, J. G., Hartl, D., Yunis, E. J., and Goldfeld, A. E.. 1998. Identification of three new single nucleotide polymorphisms in the human tumor necrosis factor-alpha gene promoter. Tissue Antigens 52:359–367
  • Ziegler-Heitbrock, H. W., Thiel, E., Futterer, A., Herzog, V., Wirtz, A., and Riethmuller, G.. 1988. Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes. Int. J. Cancer 41:456–461

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.