44
Views
64
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Magnitude of the CREB-Dependent Transcriptional Response Is Determined by the Strength of the Interaction between the Kinase-Inducible Domain of CREB and the KIX Domain of CREB-Binding Protein

, , , &
Pages 9409-9422 | Received 03 Jul 2000, Accepted 26 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L.. 1997. TbetaRI phosphorylation of Smad2 or Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J. Biol. Chem. 272:27678–27685
  • Arias, J., Alberts, A. S., Brindle, P., Claret, F. X., Smeal, T., Karin, M., Feramisco, J., and Montminy, M.. 1994. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370:226–229
  • Bannister, A. J., and Kouzarides, T.. 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643
  • Bonni, A., Ginty, D. D., Dudek, H., and Greenberg, M. E.. 1995. Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol. Cell. Neurosci. 6:168–183
  • Brindle, P., Nakajima, T., and Montminy, M.. 1995. Multiple protein kinase A-regulated events are required for transcriptional induction by cAMP. Proc. Natl. Acad. Sci. USA 92:10521–10525
  • Cardinaux, J.-R., Notis, J. C., Zhang, Q., Vo, N., Craig, J. C., Fass, D. M., Brennan, R. G., and Goodman, R. H.. 2000. Recruitment of CREB binding protein is sufficient for CREB-mediated gene activation. Mol. Cell. Biol. 20:1546–1552
  • Chawla, S., Hardingham, G. E., Quinn, D. R., and Bading, H.. 1998. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281:1505–1509
  • Cho, H., Orphanides, G., Sun, X., Yang, X.-J., Ogryzko, V., Lees, E., Nakatani, Y., and Reinberg, D.. 1998. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18:5355–5363
  • Chrivia, J. C., Kwok, R. P., Lamb, N., Hagiwara, M., Montminy, M. R., and Goodman, R. H.. 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859
  • Cruzalegui, F. H., and Means, A. R.. 1993. Biochemical characterization of the multifunctional Ca2+/calmodulin-dependent protein kinase type IV expressed in insect cells. J. Biol. Chem. 268:26171–26178
  • Dash, P. K., Karl, K. A., Colicos, M. A., Prywes, R., and Kandel, E. R.. 1991. cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 88:5061–5065
  • Dmitrova, M., Younes-Cauet, G., Oertel-Buchheit, P., Porte, D., Schnarr, M., and Granger-Schnarr, M.. 1998. A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli. Mol. Gen. Genet. 257:205–212
  • Dove, S. L., and Hochschild, A.. 1998. Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev. 12:745–754
  • Dove, S. L., Joung, J. K., and Hochschild, A.. 1997. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature 386:627–630
  • Du, K., Asahara, H., Jhala, U. S., Wagner, B. L., and Montminy, M.. 2000. Characterization of a CREB gain-of-function mutant with constitutive transcriptional activity in vivo. Mol. Cell. Biol. 20:4320–4327
  • Enslen, H., Sun, P., Brickey, D., Soderling, S. H., Klamo, E., and Soderling, T. R.. 1994. Characterization of Ca2+/calmodulin-dependent protein kinase IV. Role in transcriptional regulation. J. Biol. Chem. 269:15520–15527
  • Errede, B., and Levin, D. E.. 1993. A conserved kinase cascade for MAP kinase activation in yeast. Curr. Opin. Cell Biol. 5:254–260
  • Farrell, S., Simkovich, N., Wu, Y., Barberis, A., and Ptashne, M.. 1996. Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes Dev. 10:2359–2367
  • Fields, S., and Song, O.. 1989. A novel genetic system to detect protein-protein interactions. Nature 340:245–246
  • Ginty, D. D., Bonni, A., and Greenberg, M. E.. 1994. Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77:713–725
  • Ginty, D. D., Kornhauser, J. M., Thompson, M. A., Bading, H., Mayo, K. E., Takahashi, J. S., and Greenberg, M. E.. 1993. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260:238–241
  • Goldman, P. S., Tran, V. K., and Goodman, R. H.. 1997. The multifunctional role of the co-activator CBP in transcriptional regulation. Recent Prog. Horm. Res. 52:103–119
  • Gonzalez, G. A., Menzel, P., Leonard, J., Fischer, W. H., and Montminy, M. R.. 1991. Characterization of motifs which are critical for activity of the cyclic AMP-responsive transcription factor CREB. Mol. Cell. Biol. 11:1306–1312
  • Gonzalez, G. A., and Montminy, M. R.. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680
  • Hanks, S. K., Quinn, A. M., and Hunter, T.. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52
  • Hays, L. B., Chen, Y. S., and Hu, J. C.. 2000. Two-hybrid system for characterization of protein-protein interactions in E. Coli. BioTechniques 29:288–290, 292–294, 296.
  • Hu, J. C., Kornacker, M. G., and Hochschild, A.. 2000. Escherichia coli one- and two-hybrid systems for the analysis and identification of protein-protein interactions. Methods 20:80–94
  • Joung, J. K., Ramm, E. I., and Pabo, C. O.. 2000. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc. Natl. Acad. Sci. USA 97:7382–7387
  • Karimova, G., Pidoux, J., Ullmann, A., and Ladant, D.. 1998. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA 95:5752–5756
  • Kee, B. L., Arias, J., and Montminy, M. R.. 1996. Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator. J. Biol. Chem. 271:2373–2375
  • Khokhlatchev, A., Xu, S., English, J., Wu, P., Schaefer, E., and Cobb, M. H.. 1997. Reconstitution of mitogen-activated protein kinase phosphorylation cascades in bacteria. Efficient synthesis of active protein kinases. J. Biol. Chem. 272:11057–11062
  • Kornacker, M. G., Remsburg, B., and Menzel, R.. 1998. Gene activation by the AraC protein can be inhibited by DNA looping between AraC and a LexA repressor that interacts with AraC: possible applications as a two-hybrid system. Mol. Microbiol. 30:615–624
  • Korzus, E., Torchia, J., Rose, D. W., Xu, L., Kurokawa, R., McInerney, E. M., Mullen, T. M., Glass, C. K., and Rosenfeld, M. G.. 1998. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279:703–707
  • Kwok, R. P., Lundblad, J. R., Chrivia, J. C., Richards, J. P., Bachinger, H. P., Brennan, R. G., Roberts, S. G., Green, M. R., and Goodman, R. H.. 1994. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223–226
  • Maniatis, T., Falvo, J. V., Kim, T. H., Kim, T. K., Lin, C. H., Parekh, B. S., and Wathelet, M. G.. 1998. Structure and function of the interferon-beta enhanceosome. Cold Spring Harbor Symp. Quant. Biol. 63:609–620
  • Matthews, R. P., Guthrie, C. R., Wailes, L. M., Zhao, X., Means, A. R., and McKnight, G. S.. 1994. Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol. Cell. Biol. 14:6107–6116
  • Maurer, R. A.. 1989. Both isoforms of the cAMP-dependent protein kinase catalytic subunit can activate transcription of the prolactin gene. J. Biol. Chem. 264:6870–6873
  • Mendelsohn, A. R., and Brent, R.. 1994. Applications of interaction traps/two-hybrid systems to biotechnology research. Curr. Opin. Biotechnol. 5:482–486
  • Merika, M., Williams, A. J., Chen, G., Collins, T., and Thanos, D.. 1998. Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol. Cell 1:277–287
  • Miranti, C. K., Ginty, D. D., Huang, G., Chatila, T., and Greenberg, M. E.. 1995. Calcium activates serum response factor-dependent transcription by a Ras- and Elk-1-independent mechanism that involves a Ca2+/calmodulin-dependent kinase. Mol. Cell. Biol. 15:3672–3684
  • Munoz-Dorado, J., Inouye, S., and Inouye, M.. 1991. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 67:995–1006
  • Nakajima, T., Uchida, C., Anderson, S. F., Lee, C. G., Hurwitz, J., Parvin, J. D., and Montminy, M.. 1997. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90:1107–1112
  • Nakajima, T., Uchida, C., Anderson, S. F., Parvin, J. D., and Montminy, M.. 1997. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 11:738–747
  • Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y.. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959
  • Ohya, Y., Kawasaki, H., Suzuki, K., Londesborough, J., and Anraku, Y.. 1991. Two yeast genes encoding calmodulin-dependent protein kinases. Isolation, sequencing and bacterial expressions of CMK1 and CMK2. J. Biol. Chem. 266:12784–12794
  • Parker, D., Ferreri, K., Nakajima, T., LaMorte, V. J., Evans, R., Koerber, S. C., Hoeger, C., and Montminy, M. R.. 1996. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol. 16:694–703
  • Parker, D., Rivera, M., Zor, T., Henrion-Caude, A., Radhakrishnan, I., Kumar, A., Shapiro, L. H., Wright, P. E., Montminy, M., and Brindle, P. K.. 1999. Role of secondary structure in discrimination between constitutive and inducible activators. Mol. Cell. Biol. 19:5601–5607
  • Pelletier, J. N., Arndt, K. M., Pluckthun, A., and Michnick, S. W.. 1999. An in vivo library-versus-library selection of optimized protein-protein interactions. Nat. Biotechnol. 17:683–690
  • Planas-Silva, M. D., and Means, A. R.. 1992. Expression of a constitutive form of calcium/calmodulin dependent protein kinase II leads to arrest of the cell cycle in G2. EMBO J. 11:507–517
  • Ptashne, M., and Gann, A.. 1997. Transcriptional activation by recruitment. Nature 386:569–577
  • Quinn, P. G.. 1993. Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription. J. Biol. Chem. 268:16999–17009
  • Radhakrishnan, I., Perez-Alvarado, G. C., Parker, D., Dyson, H. J., Montminy, M. R., and Wright, P. E.. 1997. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91:741–752
  • Schwaninger, M., Blume, R., Kruger, M., Lux, G., Oetjen, E., and Knepel, W.. 1995. Involvement of the Ca(2+)-dependent phosphatase calcineurin in gene transcription that is stimulated by cAMP through cAMP response elements. J. Biol. Chem. 270:8860–8866
  • Sheng, M., McFadden, G., and Greenberg, M. E.. 1990. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4:571–582
  • Sheng, M., Thompson, M. A., and Greenberg, M. E.. 1991. CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252:1427–1430
  • Shieh, P. B., Hu, S. C., Bobb, K., Timmusk, T., and Ghosh, A.. 1998. Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron 20:727–740
  • Shih, H. M., Goldman, P. S., DeMaggio, A. J., Hollenberg, S. M., Goodman, R. H., and Hoekstra, M. F.. 1996. A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. Proc. Natl. Acad. Sci. USA 93:13896–13901
  • Sun, P., Enslen, H., Myung, P. S., and Maurer, R. A.. 1994. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8:2527–2539
  • Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J., and Greenberg, M. E.. 1998. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726
  • Thompson, M. A., Ginty, D. D., Bonni, A., and Greenberg, M. E.. 1995. L-type voltage-sensitive Ca2+ channel activation regulates c-fos transcription at multiple levels. J. Biol. Chem. 270:4224–4235
  • Udo, H., Munoz-Dorado, J., Inouye, M., and Inouye, S.. 1995. Myxococcus xanthus, a gram-negative bacterium, contains a transmembrane protein serine/threonine kinase that blocks the secretion of beta-lactamase by phosphorylation. Genes Dev. 9:972–983
  • Whipple, F. W.. 1998. Genetic analysis of prokaryotic and eukaryotic DNA-binding proteins in Escherichia coli. Nucleic Acids Res. 26:3700–3706
  • Whipple, F. W., Hou, E. F., and Hochschild, A.. 1998. Amino acid-amino acid contacts at the cooperativity interface of the bacteriophage lambda and P22 repressors. Genes Dev. 12:2791–2802
  • Wu, Y., Reece, R. J., and Ptashne, M.. 1996. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 15:3951–3963
  • Xu, L., Lavinsky, R. M., Dasen, J. S., Flynn, S. E., McInerney, E. M., Mullen, T. M., Heinzel, T., Szeto, D., Korzus, E., Kurokawa, R., Aggarwal, A. K., Rose, D. W., Glass, C. K., and Rosenfeld, M. G.. 1998. Signal-specific co-activator domain requirements for Pit-1 activation. Nature 395:301–306
  • Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H., and Nakatani, Y.. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324
  • Yie, J., Senger, K., and Thanos, D.. 1999. Mechanism by which the IFN-beta enhanceosome activates transcription. Proc. Natl. Acad. Sci. USA 96:13108–13113
  • Zhang, C. C.. 1996. Bacterial signalling involving eukaryotic-type protein kinases. Mol. Microbiol. 20:9–15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.