27
Views
113
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Orphan Nuclear Receptor SHP Utilizes Conserved LXXLL-Related Motifs for Interactions with Ligand-Activated Estrogen Receptors

, , , , &
Pages 1124-1133 | Received 16 Jul 1999, Accepted 11 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Anonymous. A unified nomenclature system for the nuclear receptor superfamily. Cell 97:161–163
  • Barton, G. J.. 1993. 1999. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6:37–40
  • Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H., and Moras, D.. 1995. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 375:377–382
  • Brzozowski, A. M., Pike, A. C., Dauter, Z., Hubbard, R. E., Bonn, T., Engstrom, O., Ohman, L., Greene, G. L., Gustafsson, J. Å., and Carlquist, M.. 1997. Molecular basis of agonism and antagonism in the estrogen receptor. Nature 389:753–758
  • Cavailles, V., Dauvois, S., Danielian, P. S., and Parker, M. G.. 1994. Interaction of proteins with transcriptionally active estrogen receptors. Proc. Natl. Acad. Sci. USA 91:10009–10013
  • Chen, H., Lin, R. J., Xie, W., Wilpitz, D., and Evans, R.. 1999. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98:675–686
  • Darimont, B. D., Wagner, R. L., Apriletti, J. W., Stallcup, M. R., Kushner, P. J. B., Fletterick, J. D., R. J., and Yamamoto, K. R.. 1998. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12:3343–3356
  • Ding, X. F., Anderson, C. M., Ma, H., Hong, H., Uht, R. M., Kushner, P. J., and Stallcup, M. R.. 1998. Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC- 1): multiple motifs with different binding specificities. Mol. Endocrinol. 12:302–313
  • Enmark, E., and Gustafsson, J. Å.. 1996. Orphan nuclear receptors—the first eight years. Mol. Endocrinol. 10:1293–1307
  • Freedman, L.. 1999. Increasing the complexity of coactivation in nuclear receptor signaling. Cell 97:5–8
  • Gaudon, C., Chambon, P., and Losson, R.. 1999. Role of the essential yeast protein PSU1 in transcriptional enhancement by the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 18:2229–2240
  • Glass, C. K., Rose, D. W., and Rosenfeld, M. G.. 1997. Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9:222–232
  • Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G.. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736
  • Huang, N., vom Baur, E., Garnier, J. M., Lerouge, T., Vonesch, J. L., Lutz, Y., Chambon, P., and Losson, R.. 1998. Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators. EMBO J. 17:3398–3412
  • Ito, M., Yuan, C. X., Malik, S., Gu, W., Fondell, J. D., Yamamura, S., Fu, Z. Y., Zhang, X. L., Qin, J., and Roeder, R. G.. 1999. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3:361–370
  • Johansson, L., Thomsen, J. S., Damdimopoulos, A. E., Spyrou, G., Gustafsson, J. Å., and Treuter, E.. 1999. The orphan nuclear receptor SHP inhibits agonist-dependent transcriptional activity of estrogen receptors ER-alpha and ER-beta. J. Biol. Chem. 274:345–353
  • Kalkhofen, E., Valentine, J. E., Heery, D. M., and Parker, M. G.. 1998. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 17:232–243
  • Kurokawa, R., Söderström, M., Hörlein, A., Halachmi, S., Brown, M., Rosenfeld, M. G., and Glass, C. K.. 1995. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377:451–454
  • Lalli, E., Bardoni, B., Zazopoulos, E., Wurtz, J. M., Strom, T. M., Moras, D., and Sassone-Corsi, P.. 1997. A transcriptional silencing domain in DAX-1 whose mutation causes adrenal hypoplasia congenita. Mol. Endocrinol. 11:1950–1960
  • Le Douarin, B., Nielsen, A. L., Garnier, J. M., Ichinose, H., Jeanmougin, F., Losson, R., and Chambon, P.. 1996. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 15:6701–6715
  • Leers, J., Treuter, E., and Gustafsson, J. Å.. 1998. Mechanistic principles in NR box-dependent interaction between nuclear hormone receptors and the coactivator TIF2. Mol. Cell. Biol. 18:6001–6013
  • L'Horset, F., Dauvois, S., Heery, D. M., Cavailles, V., and Parker, M. G.. 1996. RIP-140 interacts with multiple nuclear receptors by means of two distinct sites. Mol. Cell. Biol. 16:6029–6036
  • Mak, H. Y., Hoare, S., Henttu, P. M., and Parker, M. G.. 1999. Molecular determinants of the estrogen receptor-coactivator interface. Mol. Cell. Biol. 19:3895–3903
  • Mangelsdorf, D. J., and Evans, R. M.. 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850
  • Masuda, N., Yasumo, H., Tamura, T., Hashiguchi, N., Furusawa, T., Tsukamoto, T., Sadano, H., and Osumi, T.. 1997. An orphan nuclear receptor lacking a zinc-finger DNA-binding domain: interaction with several nuclear receptors. Biochim. Biophys. Acta 1350:27–32
  • McInerney, E. M., Rose, D. W., Flynn, S. E., Westin, S., Mullen, T. M., Krones, A., Inostroza, J., Torchia, J., Nolte, R. T., Assa-Munt, N., Milburn, M. V., Glass, C. K., and Rosenfeld, M. G.. 1998. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 12:3357–3368
  • McKenna, N. J., Lanz, R. B., and O'Malley, B. W.. 1999. Nuclear receptor coregulators: cellular and molecular biology. Endocrine Rev. 20:321–344
  • Nishikawa, J., Saito, K., Goto, J., Dakeyama, F., Matsuo, M., and Nishihara, T.. 1999. New screening methods for chemicals with hormonal activities using interaction of nuclear receptor with coactivator. Toxicol. Appl. Pharmacol. 154:76–83
  • Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeld, M. G., Willson, T. M., Glass, C. K., and Milburn, M. V.. 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor gamma. Nature 395:137–143
  • Norris, J. D., Fan, D., Stallcup, M. R., and McDonnell, D. P.. 1998. Enhancement of estrogen receptor transcriptional activity by the coactivator GRIP-1 highlights the role of activation function 2 in the determining estrogen receptor pharmacology. J. Biol. Chem. 273:6679–6688
  • Paech, K., Webb, P., Kuiper, G. G., Nilsson, S., Gustafsson, J., Kushner, P. J., and Scanlan, T. S.. 1997. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 277:1508–1510
  • Paige, L. A., Christensen, D. J., Gron, H., Norris, J. D., Gottlin, E. B., Padilla, K. M., Chang, C. Y., Ballas, L. M., Hamilton, P. T., McDonnell, D. P., and Fowlkes, D. M.. 1999. Estrogen receptor (ER) modulators each induce distinct conformational changes in ER alpha and ER beta. Proc. Natl. Acad. Sci. USA 96:3999–4004
  • Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., and Spiegelman, B. M.. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839
  • Rachez, C., Suldan, Z., Ward, J., Chang, C. P., Burakov, D., Erdjument-Bromage, H., Tempst, P., and Freedman, L. P.. 1998. A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev. 12:1787–1800
  • Seol, W., Choi, H. S., and Moore, D. D.. 1996. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 272:1336–1339
  • Seol, W., Chung, M., and Moore, D. D.. 1997. Novel receptor interaction and repression domains in the orphan receptor SHP. Mol. Cell. Biol. 17:7126–7131
  • Seol, W., Hanstein, B., Brown, M., and Moore, D. D.. 1998. Inhibition of estrogen receptor action by the orphan receptor SHP (short heterodimer partner). Mol. Endocrinol. 12:1551–1557
  • Shiau, A. K., Barstad, D., Loria, P. M., Cheng, L., Kushner, P. J., Agard, D. A., and Greene, G. L.. 1998. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937
  • Struhl, K.. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12:599–606
  • Torchia, J., Rose, D. W., Inostroza, J., Kamei, Y., Westin, S., Glass, C. K., and Rosenfeld, M. G.. 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684
  • Treuter, E., Albrektsen, T., Johansson, L., Leers, J., and Gustafsson, J. Å.. 1998. A regulatory role for RIP140 in nuclear receptor activation. Mol. Endocrinol. 12:864–881
  • Treuter, E., Johansson, L., Thomsen, J. S., Wärnmark, A., Leers, J., Pelto-Huikko, M., Sjöberg, M., Wright, A. P. H., Spyrou, G., and Gustafsson, J. Å.. 1999. Competition between TRAP220 and TIF2 for binding to nuclear receptors. J. Biol. Chem. 274:6667–6677
  • Voegel, J. J., Heine, M. J., Tini, M., Vivat, V., Chambon, P., and Gronemeyer, H.. 1998. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17:507–519
  • Westin, S., Kurokawa, R., Nolte, R. T., Wisely, G. B., McInerney, E. M., Rose, D. W., Milburn, M. V., Rosenfeld, M. G., and Glass, C. K.. 1998. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 395:199–202
  • Wurtz, J. M., Bourguet, W., Renaud, J. P., Vivat, V., Chambon, P., Moras, D., and Gronemeyer, H.. 1996. A canonical structure for the ligand-binding domain of nuclear receptors. Nat. Struct. Biol. 3:87–94
  • Zhou, G., Cummings, R., Li, Y., Mitra, S., Wilkinson, H. A., Elbrecht, A., Hermes, J. D., Schaeffer, J. M., Smith, R. G., and Moller, D. E.. 1998. Nuclear receptors have distinct affinities for coactivators: characterization by fluorescence resonance energy transfer. Mol. Endocrinol. 12:1594–1604

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.