8
Views
91
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Activation of the Heterodimeric IκB Kinase α (IKKα)-IKKβ Complex Is Directional: IKKα Regulates IKKβ under Both Basal and Stimulated Conditions

, , &
Pages 1170-1178 | Received 16 Sep 1999, Accepted 10 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Baeuerle, P. A., and Baltimore, D.. 1996. NF-κB: ten years after. Cell 87:13–20
  • Baldwin, A.. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683
  • Beg, A. A., and Baldwin, A. J.. 1993. The IκB proteins: multifunctional regulators of Rel/NF-κB transcription factors. Genes Dev. 7:2064–2070
  • Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S., and Baltimore, D.. 1995. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376:167–170
  • Belvin, M. P., and Anderson, K. V.. 1996. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu. Rev. Cell Dev. Biol. 12:393–416
  • Beraud, C., Sun, S. C., Ganchi, P., Ballard, D. W., and Greene, W. C.. 1994. Human T-cell leukemia virus type I Tax associates with and is negatively regulated by the NF-κB2 p100 gene product: implications for viral latency. Mol. Cell. Biol. 14:1374–1382
  • Brown, K., Gerstberger, S., Carlson, L., Franzoso, G., and Siebenlist, U.. 1995. Control of IκB-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1488
  • Chen, Z., Hagler, J., Palombella, V. J., Melandri, F., Scherer, D., Ballard, D., and Maniatis, T.. 1995. Signal-induced site-specific phosphorylation targets IκB alpha to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597
  • Chu, Z.-L., Shin, Y.-A., Yang, J.-M., DiDonato, J. A., and Ballard, D. A.. 1999. IKKγ mediates the interaction of cellular IκB kinases with the Tax transforming protein of human T cell leukemia virus type 1. J. Biol. Chem. 274:15297–15300
  • Chu, Z. L., DiDonato, J. A., Hawiger, J., and Ballard, D. W.. 1998. The tax oncoprotein of human T-cell leukemia virus type 1 associates with and persistently activates IκB kinases containing IKKα and IKKβ. J. Biol. Chem. 273:15891–15894
  • Cohen, L., Henzel, W. J., and Baeuerle, P. A.. 1998. IKAP is a scaffold protein of the IκB kinase complex. Nature 395:292–296
  • Delhase, M., Hayakawa, M., Chen, Y., and Karin, M.. 1999. Positive and negative regulation of the IκB kinase activity through IKKβ subunit phosphorylation. Science 284:309–313
  • DiDonato, J., Mercurio, F., Rosette, C., Wu, L. J., Suyang, H., Ghosh, S., and Karin, M.. 1996. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16:1295–304
  • DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., and Karin, M.. 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388:548–554
  • Fischer, C., Page, S., Weber, M., Eisele, T., Neumeier, D., and Brand, K.. 1999. Differential effects of lipopolysaccharide and tumor necrosis factor on monocytic IκB kinase signalsome activation and IκB proteolysis. J. Biol. Chem. 274:24625–24632
  • Geleziunas, R., Ferrell, S., Lin, X., Mu, Y., Cunningham, E. J., Grant, M., Connelly, M. A., Hambor, J. E., Marcu, K. B., and Greene, W. C.. 1998. Human T-cell leukemia virus type 1 Tax induction of NF-κB involves activation of the IκB kinase alpha (IKKα) and IKKβ cellular kinases. Mol. Cell. Biol. 18:5157–5165
  • Ghosh, S., May, M. J., and Kopp, E. B.. 1998. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225–260
  • Harhaj, E. W., and Sun, S.-C.. 1999. IKKγ serves as a docking subunit of the IκB kinases (IKK) and mediates interaction of IKK with the human T-cell leukemia virus Tax protein. J. Biol. Chem. 274:22911–22914
  • Hirano, M., Osada, S., Aoki, T., Hirai, S., Hosaka, M., Inoue, J., and Ohno, S.. 1996. MEK kinase is involved in tumor necrosis factor alpha-induced NF-κB activation and degradation of IκB-α. J. Biol. Chem. 271:13234–13238
  • Hsu, H., Shu, H. B., Pan, M. G., and Goeddel, D. V.. 1996. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308
  • Hu, Y., Baud, V., Delhase, M., Zhang, P., Deerinck, T., Ellisman, M., Johnson, R., and Karin, M.. 1999. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of the IκB kinase. Science 284:316–320
  • Jin, D.-Y., Giordano, V., Kibler, K. V., Nakano, H., and Jeang, K.-T.. 1999. Role of adapter function in oncoprotein-mediated activation of NF-κB. J. Biol. Chem. 274:17402–17405
  • Kelliher, M. A., Grimm, S., Ishida, Y., Kuo, F., Stanger, B. Z., and Leder, P.. 1998. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8:297–303
  • Kempiak, S. J., Hiura, T. S., and Nel, A. E.. 1999. The Jun kinase cascade is responsible for activating the CD28 response element of the IL-2 promoter: proof of cross-talk with the IκB kinase cascade. J. Immunol. 162:3176–3187
  • Kirschning, C. J., Wesche, H., Merrill Ayres, T., and Rothe, M.. 1998. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 188:2091–2097
  • Klement, J. F., Rice, N. R., Car, B. D., Abbondanzo, S. J., Powers, G. D., Bhatt, H., Chen, C.-H., Rosen, C. A., and Stewart, C. L.. 1996. IκB alpha deficiency results in a sustained NF-κB response and severe widespread dermatitis in mice. Mol. Cell. Biol. 16:2341–2349
  • Lee, F. S., Hagler, J., Chen, Z. J., and Maniatis, T.. 1997. Activation of the IκB alpha kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88:213–222
  • Lee, F. S., Peters, R. T., Dang, L. C., and Maniatis, T.. 1998. MEKK1 activates both IκB kinase α and IκB kinase β. Proc. Natl. Acad. Sci. USA 95:9319–9324
  • Li, J., Peet, G. W., Pullen, Schembri-King, S. S., J., Warren, T. C., Marcu, K. B., Kehry, M. R., Barton, R., and Jakes, S.. 1998. Recombinant IκB kinases α and β are direct kinases of IκBα. J. Biol. Chem. 273:30736–30741
  • Li, Q., Lu, Q., Hwang, J. Y., Buscher, D., Lee, K.-F., Izpisua-Belmonte, J. C., and Verma, I. M.. 1999. The IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev. 13:1322–1328
  • Li, Q., Van Antwerp, D., Mercurio, F., Lee, K.-F., and Verma, I. M.. 1999. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284:321–325
  • Li, Z.-W., Chu, W., Hu, Y., Delhase, M., Deerinck, T., Ellisman, M., Johnson, R., and Karin, M.. 1999. The IKKβ subunit of IκB kinase (IKK) is essential for nuclear factor-κB activation and prevention of apoptosis. J. Exp. Med. 189:1839–1845
  • Lin, X., Cunningham, E. T., Mu, Y., Geleziunas, R., and Greene, W. C.. 1999. The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-κB acting through the NF-κB-inducing kinase and IκB kinases. Immunity 10:271–280
  • Lin, X., Mu, Y., Cunningham, E. T., Marcu, K. B., Geleziunas, R., and Greene, W. C.. 1998. Molecular determinants of NF-κB-inducing kinase action. Mol. Cell. Biol. 18:5899–5907
  • Ling, L., Cao, Z., and Goeddel, D. V.. 1998. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc. Natl. Acad. Sci. USA 95:3792–3797
  • Malinin, N. L., Boldin, M. P., Kovalenko, A. V., and Wallach, D.. 1997. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385:540–544
  • May, M. J., and Ghosh, S.. 1997. Rel/NF-κB and IκB proteins: an overview. Semin. Cancer Biol. 8:63–73
  • Mercurio, F., Murray, B. W., Shevchenko, A., Bennett, B. L., Young, D. B., Li, J. W., Pascual, G., Motiwala, A., Zhu, H., Mann, M., and Manning, A. M.. 1999. IκB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol. Cell. Biol. 19:1526–1538
  • Mercurio, F., Zhu, H., Murray, B. W., Shevchenko, A., Bennett, B. L., Li, J., Young, D. B., Barbosa, M., Mann, M., Manning, A., and Rao, A.. 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866
  • Meyer, C. F., Wang, X., Chang, C., Templeton, D., and Tan, T. H.. 1996. Interaction between c-Rel and the mitogen-activated protein kinase kinase kinase 1 signaling cascade in mediating κB enhancer activation. J. Biol. Chem. 271:8971–8976
  • Nakano, H., Shindo, M., Sakon, S., Nishinaka, S., Mihara, M., Yagita, H., and Okumura, K.. 1998. Differential regulation of IκB kinase alpha and beta by two upstream kinases, NF-κB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc. Natl. Acad. Sci. USA 95:3537–3542
  • Nemoto, S., DiDonato, J. A., and Lin, A.. 1998. Coordinate regulation of IκB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-κB-inducing kinase. Mol. Cell. Biol. 18:7336–7343
  • O'Connell, M. A., Bennett, B. L., Mercurio, F., Manning, A. M., and Mackman, N.. 1998. Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J. Biol. Chem. 273:30410–30414
  • Regnier, C. H., Song, H. Y., Gao, X., Goeddel, D. V., Cao, Z., and Rothe, M.. 1997. Identification and characterization of an IκB kinase. Cell 90:373–383
  • Rothe, M., Sarma, V., Dixit, V. M., and Goeddel, D. V.. 1995. TRAF2-mediated activation of NF-κB by TNF receptor 2 and CD40. Science 269:1424–1427
  • Rothwarf, D. M., Zandi, E., Natoli, G., and Karin, M.. 1998. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395:297–300
  • Scherer, D. C., Brockman, J. A., Chen, Z., Maniatis, T., and Ballard, D. W.. 1995. Signal-induced degradation of I κBα requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92:11259–11263
  • Smith, M. R., and Greene, W. C.. 1990. Identification of HTLV-I tax trans-activator mutants exhibiting novel transcriptional phenotypes. Genes Dev. 4:1875–85
  • Song, H. Y., Regnier, C. H., Kirschning, C. J., Goeddel, D. V., and Rothe, M.. 1997. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-κB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc. Natl. Acad. Sci. USA 94:9792–9796
  • Sun, S., Elwood, J., and Greene, W. C.. 1996. Both amino- and carboxyl-terminal sequences within IκBα regulate its inducible degradation. Mol. Cell. Biol. 16:1058–1065
  • Takeda, K., Takeuchi, O., Tsujimura, T., Itami, S., Adachi, O., Kawai, T., Sanjo, H., Yoshikawa, K., Terada, N., and Akira, S.. 1999. Limb and skin abnormalities in mice lacking IKKα. Science 284:313–316
  • Tanaka, M., Fuentes, M. E., Yamaguchi, K., Durnin, M. H., Dalrymple, S. A., Hardy, K. L., and Goeddel, D. V.. 1999. Embryonic lethality, liver degeneration and impaired NF-κB activation in IKK-beta-deficient mice. Immunity 10:421–429
  • Thanos, D., and Maniatis, T.. 1995. NF-κB: a lesson in family values. Cell 80:529–532
  • Ting, A. T., Pimentel, M. F., and Seed, B.. 1996. RIP mediates tumor necrosis factor receptor 1 activation of NF-κB but not Fas/APO-1-initiated apoptosis. EMBO J. 15:6189–6196
  • Traenckner, E. B., Pahl, H. L., Henkel, T., Schmidt, K. N., Wilk, S., and Baeuerle, P. A.. 1995. Phosphorylation of human IκB-α on serines 32 and 36 controls IκB-α proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14:2876–2883
  • Uhlik, M., Good, L., Xiao, G., Harhaj, E. W., Zandi, E., Karin, M., and Sun, S. C.. 1998. NF-κB-inducing kinase and IκB kinase participate in human T-cell leukemia virus I Tax-mediated NF-κB activation. J. Biol. Chem. 273:21132–21136
  • Verma, I. M., Stevenson, J. K., Schwarz, E. M., Van, A. D., and Miyamoto, S.. 1995. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735
  • Woronicz, J. D., Gao, X., Cao, Z., Rothe, M., and Goeddel, D. V.. 1997. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278:866–869
  • Yamaoka, S., Courtois, G., Bessia, C., Whiteside, S. T., Weil, R., Agou, F., Kirk, H. E., Kay, R. J., and Israel, A.. 1998. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93:1231–1240
  • Yang, R. B., Mark, M. R., Gray, A., Huang, A., Xie, M. H., Zhang, M., Goddard, A., Wood, W. I., Gurney, A. L., and Godowski, P. J.. 1998. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395:284–288
  • Yin, M. J., Christerson, L. B., Yamamoto, Y., Kwak, Y. T., Xu, S., Mercurio, F., Barbosa, M., Cobb, M. H., and Gaynor, R. B.. 1998. HTLV-1 Tax protein binds to MEKK1 to stimulate IκB kinase activity and NF-κB activation. Cell 93:875–884
  • Zandi, E., Chen, Y., and Karin, M.. 1998. Direct phosphorylation of IκB by IKKα and IKKβ: discrimination between free and NF-κB-bound substrate. Science 281:1360–1363
  • Zandi, E., and Karin, M.. 1999. Bridging the gap: composition, regulation and physiological function of the IκB kinase complex. Mol. Cell. Biol. 19:4547–4551
  • Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M., and Karin, M.. 1997. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91:243–252

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.