115
Views
232
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage

, , , , , & show all
Pages 1206-1218 | Received 08 Jun 1999, Accepted 19 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Aboussekhra, A., and Wood, R. D.. 1995. Detection of nucleotide excision repair incisions in human fibroblasts by immunostaining for PCNA. Exp. Cell Res. 221:326–332
  • Allen, B. L., Uhlmann, F., Gaur, L. K., Mulder, B. A., Posey, K. L., Jones, L. B., and Hardin, S. H.. 1998. DNA recognition properties of the N-terminal DNA binding domain within the large subunit of replication factor C. Nucleic Acids Res. 26:3877–3882
  • Almouzni, G., and Wolffe, A. P.. 1993. Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo. Genes Dev. 7:2033–2047
  • Bauer, G. A., and Burgers, P. M.. 1990. Molecular cloning, structure and expression of the yeast proliferating cell nuclear antigen gene. Nucleic Acids Res. 18:261–265
  • Bentley, N. J., and Carr, A. M.. 1997. DNA structure-dependent checkpoints in model systems. Biol. Chem. 378:1267–1274
  • Bravo, R., Frank, R., Blundell, P. A., and Macdonald-Bravo, H.. 1987. Cyclin/PCNA is the auxiliary protein of DNA polymerase-δ. Nature 326:515–517
  • Burgers, P. M. J.. 1991. Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases δ and ɛ. J. Biol. Chem. 266:22698–22706
  • Chen, J., Chen, S., Saha, P., and Dutta, A.. 1996. p21cip1/Waf1 disrupts the recruitment of human FEN-1 by proliferating cell nuclear antigen into the DNA replication complex. Proc. Natl. Acad. Sci. USA 93:11597–11602
  • Cox, L. S.. 1997. Who binds wins: competition for PCNA rings out cell-cycle changes. Trends Cell Biol. 7:493–498
  • Eissenberg, J. C., Ayyagari, R., Gomes, X. V., and Burgers, P. M.. 1997. Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol. Cell. Biol. 17:6367–6368
  • Elgin, S. C. R.. 1995. Chromatin structure and gene expression. IRL Press, Oxford, England
  • Elledge, S. J.. 1996. Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672
  • Enomoto, S., and Berman, J.. 1998. Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev. 12:219–232
  • Enomoto, S., McCune-Zierath, P., Geraminejad, M., Sanders, M., and Berman, J.. 1997. Rlf2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev. 11:358–363
  • Friedberg, E. C., Walker, G. C., and Siede, W.. 1995. DNA repair and mutagenesis 291–294 ASM Press, Washington, D.C.
  • Frosina, G., Fortini, P., Rossi, O., Carrozzino, F., Raspaglio, G., Cox, L. S., Lane, D. P., Abbondandolo, A., and Dogliotti, E.. 1996. Two pathways for base excision repair in mammalian cells. J. Biol. Chem. 271:9573–9578
  • Gaillard, P.-H., Moggs, J. G., Roche, D. M. J., Quivy, J.-P., Becker, P. B., Wood, R. D., and Almouzni, G.. 1997. Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair. EMBO J. 16:6281–6289
  • Gaillard, P.-H., Roche, D. R., and Almouzni, G.. 1998. Nucleotide excision repair coupled to chromatin assembly. Methods Mol. Biol. 119:231–243
  • Gaillard, P. H., Martini, E. M., Kaufman, P. D., Stillman, B., Moustacchi, E., and Almouzni, G.. 1996. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86:887–896
  • Game, J. C., and Kaufman, P. D.. 1999. Role of Saccharomyces cerevisiae chromatin assembly factor-I in repair of ultraviolet radiation damage in vivo. Genetics 151:485–497
  • Gary, R., Ludwig, D. L., Cornelius, H. L., MacInnes, M. A., and Park, M. S.. 1997. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J. Biol. Chem. 272:24522–24529
  • Gaspari, T., and Carr, A. M.. 1999. DNA structure checkpoint pathways in Schizosaccharomyces pombe. Biochimie 81:173–181
  • Germond, J. E., Rouvière-Yaniv, J., Yaniv, M., and Brutlag, D.. 1979. Nicking-closing enzyme assembles nucleosome-like structures in vitro. Proc. Natl. Acad. Sci. USA 76:3779–3783
  • Gulbis, J. M., Kelman, Z., Hurwitz, J., Odonnell, M., and Kuriyan, J.. 1996. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87:297–306
  • Hartwell, L., and Kastan, M.. 1994. Cell cycle control and cancer. Science 266:1821–1828
  • Hartzog, G. A., and Winston, F.. 1997. Nucleosomes and transcription: recent lessons from genetics. Curr. Opin. Genet. Dev. 7:192–198
  • Henderson, D. S., Banga, S. S., Grigliatti, T. A., and Boyd, J. B.. 1994. Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J. 13:1450–9
  • Henderson, H. S., and Glover, D. M.. 1998. Chromosome fragmentation resulting from an inability to repair transposase-induced DNA double-strand breaks in PCNA mutants of Drosophila. Mutagenesis. 13:57–60
  • Holmes, A. M., and Haber, J. E.. 1999. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96:415–424
  • Huang, L.-C., Clarkin, K. C., and Wahl, G. M.. 1996. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc. Natl. Acad. Sci. USA 93:4827–4832
  • Johnson, R. E., Kovvali, G. K., Guzder, S. N., Amin, N. S., Holm, C., Habraken, Y., Sung, P., Prakash, L., and Prakash, S.. 1996. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J. Biol. Chem. 271:27987–27990
  • Jónsson, Z. O., Hindges, R., and Hübscher, U.. 1998. Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J. 17:2412–2425
  • Jónsson, Z. O., and Hübscher, U.. 1997. Proliferating cell nuclear antigen: more than a clamp for DNA polymerases. Bioessays 19:967–975
  • Kamakaka, R. T., Bulger, M., Kaufman, P. D., Stillman, B., and Kadonaga, J. T.. 1996. Postreplicative chromatin assembly by Drosophila and human chromatin assembly factor I. Mol. Cell. Biol. 16:810–817
  • Kaufman, P. D., Kobayashi, R., Kessler, N., and Stillman, B.. 1995. The p150 and p60 subunits of chromatin assembly factor I—a molecular link between newly synthesized histones and DNA replication. Cell 81:1105–1114
  • Kaufman, P. D., Kobayashi, R., and Stillman, B.. 1997. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor I. Genes Dev. 11:345–357
  • Kitazono, A., and Matsumoto, T.. 1998. “Isogaba Maware”: quality control of genome DNA by checkpoints. Bioessays 20:391–399
  • Krishna, T. S. R., Kong, X.-P., Gary, S., Burgers, P. M., and Kuriyan, J.. 1994. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79:1233–1243
  • Krude, T.. 1995. Chromatin assembly factor 1 (CAF-1) colocalizes with replication foci in HeLa cell nuclei. Exp. Cell Res. 220:304–311
  • Lee, S.-H., Kwong, A. D., Pan, Z.-Q., and Hurwitz, J.. 1991. Studies on the activator 1 protein complex, an accessory factor for proliferating cell nuclear antigen-dependent DNA polymerase δ. J. Biol. Chem. 266:594–602
  • Li, X., Li, J., Harrington, J., Lieber, M. R., and Burgers, P. M. J.. 1995. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 270:22109–22112
  • Lieberman, H. B., Hopkins, K. M., Nass, M., Demetrick, D., and Davey, S.. 1996. A human homologue of the Schizosaccharomyces pombe rad9+ checkpoint control gene. Proc. Natl. Acad. Sci. USA 93:13890–13895
  • Longhese, M. P., Foiani, M., Muzi-Falconi, M., Lucchini, G., and Plevani, P.. 1998. DNA damage checkpoint in budding yeast. EMBO J. 17:5525–5528
  • Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J.. 1997. Crystal structure of the nucleosome core particle at 2.8 Angstrom resolution. Nature 389:251–260
  • Lydall, D., and Weinert, T.. 1995. Yeast checkpoint genes in DNA-damage processing—implications for repair and arrest. Science 270:1488–1491
  • Maga, G., Jónsson, Z. O., Stucki, M., Spadari, S., and Hübscher, U.. 1999. Dual mode of interaction of DNA polymerase ɛ with proliferating cell nuclear antigen in primer binding and DNA synthesis. J. Mol. Biol. 285:259–267
  • Marheineke, K., and Krude, T.. 1998. Nucleosome assembly and intracellular localisation of human CAF-1 changes during the cell division cycle. J. Biol. Chem. 273:15279–15286
  • Martin, S. G., Laroche, T., Suka, N., Grunstein, M., and Gasser, S. M.. 1999. Relocalisation of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97:621–633
  • Martini, E., Roche, D. M. J., Marheineke, K., Verreault, A., and Almouzni, G.. 1998. Recruitment of phosphorylated chromatin assembly factor 1 to chromatin following UV irradiation of human cells. J. Cell Biol. 143:563–575
  • Matsumoto, Y., Kim, K., and Bogenhagen, D. F.. 1994. Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol. Cell. Biol. 14:6187–6197
  • Megee, P. C., Morgan, B. A., and Smith, M. M.. 1995. Histone H4 and the maintenance of genome integrity. Genes Dev. 9:1716–1727
  • Mills, K. D., Sinclair, D. A., and Guarente, L.. 1999. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97:609–620
  • Miura, M., Nakamura, S., Sasaki, T., Takasaki, Y., Shiomi, T., and Yamaizumi, M.. 1996. Roles of XPG and XPF/ERCC1 endonucleases in UV-induced immunostaining of PCNA in fibroblasts. Exp. Cell Res. 226:126–132
  • Moggs, J. G., and Almouzni, G.. 1999. Assays for chromatin remodelling during DNA repair. Methods Enzymol. 304:333–351
  • Moggs, J. G., and Almouzni, G.. 1999. Chromatin rearrangements during nucleotide excision repair. Biochimie 81:45–52
  • Moggs, J. G., Yarema, K. J., Essigmann, J. M., and Wood, R. D.. 1996. Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct. J. Biol. Chem. 271:7177–7186
  • Monson, E. K., de Bruin, D., and Zakian, V. A.. 1997. The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc. Natl. Acad. Sci. USA 94:13081–13086
  • Mossi, R., and Hübscher, U.. 1998. Clamping down on clamps and clamp loaders, the eukaryotic replication factor C. Eur. J. Biochem. 254:209–216
  • Nelson, W. G., and Kastan, M. B.. 1994. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol. 14:1815–1823
  • Nichols, A. F., and Sancar, A.. 1992. Purification of PCNA as a nucleotide excision repair protein. Nucleic Acids Res. 20:3559–3564
  • Nurse, P.. 1997. Checkpoint pathways come of age. Cell 91:865–867
  • O'Donnell, M., Onrust, R., Dean, F. B., Chen, M., and Hurwitz, J.. 1993. Homology in accessory proteins of replicative polymerases—E. coli to humans. Nucleic Acids Res. 21:1–3
  • Parker, A. E., Van de Weyer, I., Laus, M. C., Oostveen, I., Yon, J., Verhasselt, P., and Luyten, W. H. M. L.. 1998. A human homologue of the Schizosaccharomyces pombe rad1+ checkpoint gene encodes an exonuclease. J. Biol. Chem. 273:18332–18339
  • Parker, A. E., Van de Weyer, I., Laus, M. C., Verhasselt, P., and Luyten, W. H. M. L.. 1998. Identification of a human homologue of the Schizosaccharomyces pombe rad17+ checkpoint gene. J. Biol. Chem. 273:18340–18346
  • Podust, L. M., Podust, V. N., Floth, C., and Hubscher, U.. 1994. Assembly of DNA polymerase delta and epsilon holoenzymes depends on the geometry of the DNA template. Nucleic Acids Res. 22:2970–2975
  • Podust, L. M., Podust, V. N., Sogo, J. M., and Hubscher, U.. 1995. Mammalian DNA polymerase auxiliary proteins: analysis of replication factor C-catalyzed proliferating cell nuclear antigen loading onto circular double-stranded DNA. Mol. Cell. Biol. 15:3072–3081
  • Podust, V. N., and Hübscher, U.. 1993. Lagging strand DNA synthesis by calf thymus DNA polymerases α, β, δ and ɛ in the presence of auxiliary proteins. Nucleic Acids Res. 21:841–846
  • Prelich, G., Kostura, M., Marshak, D. R., Mathews, M. B., and Stillman, B.. 1987. The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro. Nature 326:471–475
  • Prelich, G., Tan, C.-K., Kostura, M., Mathews, M. B., So, A. G., Downey, K. M., and Stillman, B.. 1987. Functional identity of proliferating cell nuclear antigen and a DNA polymerase-δ auxiliary protein. Nature 326:517–520
  • Reynolds, N., Fantes, P. A., and MacNeill, S. A.. 1999. A key role for replication factor C in DNA replication checkpoint function in fission yeast. Nucleic Acids Res. 27:462–469
  • Rhind, N., and Russell, P.. 1998. Mitotic DNA damage and replication checkpoints in yeast. Curr. Opin. Cell Biol. 10:749–758
  • Sandaltzopoulos, R., Blank, T., and Becker, P. B.. 1994. Transcriptional repression by nucleosomes but not H1 in reconstituted preblastoderm Drosophila chromatin. EMBO J. 13:373–379
  • Schurtenberger, P., Egelhaaf, S. U., Hindges, R., Maga, G., Jónsson, Z. O., May, R. P., Glatter, O., and Hübscher, U.. 1998. The solution structure of functionally active human proliferating cell nuclear antigen determined by small-angle neutron scattering. J. Mol. Biol. 275:123–132
  • Shibahara, K.-I., and Stillman, B.. 1999. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96:575–585
  • Shivji, M. K. K., Kenny, M. K., and Wood, R. D.. 1992. Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69:367–374
  • Shivji, M. K. K., Moggs, J. G., Kuraoka, I., and Wood, R. D.. 1998. Dual incision assays for nucleotide excision repair using DNA with a lesion at a specific site. Methods Mol. Biol. 113:313–392
  • Skibbens, R. V., Corson, L. B., Koshland, D., and Hieter, P.. 1999. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev. 13:307–319
  • Smerdon, M. J., and Conconi, A.. 1999. Modulation of DNA damage and DNA repair in chromatin. Prog. Nucleic Acid Res. Mol. Biol. 62:227–255
  • Smith, S., and Stillman, B.. 1989. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25
  • Stillman, B.. 1986. Chromatin assembly during SV40 DNA replication in vitro. Cell 45:555–565
  • Studier, F. W., Rosemberg, A. H., Dunn, J. J., and Dubendorff, J.. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185:60–89
  • Tan, C.-K., Castillo, C., So, A. G., and Downey, K. M.. 1986. An auxiliary protein for DNA polymerase-δ from fetal calf thymus. J. Biol. Chem. 261:12310–12316
  • Thelen, M. P., Venclovas, C., and Fidelis, K.. 1999. A sliding clamp model for the Rad1 family of cell cycle checkpoint proteins. Cell 96:769–770
  • Tinker, R. L., Kassavetis, G. A., and Geiduschek, E. P.. 1994. Detecting the ability of viral, bacterial and eukaryotic replication proteins to track along DNA. EMBO J. 13:5330–5337
  • Tournier, S., Leroy, D., Goubin, F., Ducommun, B., and Hyams, J. S.. 1996. Heterologous expression of the human cyclin-dependent kinase inhibitor p21Cip1 in the fission yeast, Schizosaccharomyces pombe reveals a role for PCNA in the chk1+ cell cycle checkpoint pathway. Mol. Biol. Cell 7:651–662
  • Tsurimoto, T., and Stillman, B.. 1991. Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J. Biol. Chem. 266:1950–1960
  • Turner, J., Hingorani, M. M., Kelman, Z., and O'Donnell, M.. 1999. The internal workings of a DNA polymerase clamp-loading machine. EMBO J. 18:771–783
  • Uhlmann, F., Cai, J., Gibbs, E., O'Donnell, M., and Hurwitz, J.. 1997. Deletion analysis of the large subunit p140 in human replication factor C reveals regions required for complex formation and replication activities. J. Biol. Chem. 272:10058–10064
  • Umar, A., Buermeyer, A. B., Simon, J. A., Thomas, D. C., Clark, A. B., Liskay, R. M., and Kunkel, T. A.. 1996. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87:65–73
  • van Holde, K. E.. 1988. Chromatin. Springer-Verlag, New York, N.Y
  • Verreault, A., Kaufman, P. D., Kobayashi, R., and Stillman, B.. 1996. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104
  • Waga, S., and Stillman, B.. 1998. Cyclin-dependent kinase inhibitor p21 modulates the DNA primer-template recognition complex. Mol. Cell. Biol. 18:4177–4187
  • Warbrick, E.. 1998. PCNA binding through a conserved motif. Bioessays 20:195–199
  • Warbrick, E., Lane, D. P., Glover, D. M., and Cox, L. S.. 1997. Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: potential mechanism to coordinate DNA replication and DNA repair. Oncogene 14:2313–2321
  • Waseem, N. H., Labib, K., Nurse, P., and Lane, D. P.. 1992. Isolation and analysis of the fission yeast gene encoding polymerase delta accessory protein PCNA. EMBO J. 11:5111–5120
  • Weinert, T.. 1998. DNA damage and checkpoint pathways: Molecular anatomy and interactions with repair. Cell 94:555–558
  • Weinert, T.. 1998. DNA damage checkpoints update: getting molecular. Curr. Opin. Gen. Dev. 8:185–193
  • Weinert, T., and Lundblad, V.. 1999. Forever hopeful relations: chromatin, telomeres and checkpoints. Nat. Genet. 21:151–152
  • Wolffe, A.. Chromatin: structure and function, 2nd ed. Academic Press, London, England
  • Workman, J. L., and Kingston, R. E.. 1995. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67:545–579
  • Yamamoto, Y., Girard, F., Bello, B., Affolter, M., and Gehring, W. J.. 1997. The cramped gene of Drosophila is a member of the Polycomb-group, and interacts with mus209, the gene encoding proliferating cell nuclear antigen. Development 124:3385–3394
  • Zhang, P., Mo, J.-Y., Perez, A., Leon, A., Liu, L., Mazloum, N., Xu, H., and Lee, M. Y. W. T.. 1999. Direct interaction of proliferating cell nuclear antigen with the p125 catalytic subunit of mammalian DNA polymerase δ. J. Biol. Chem. 274:26647–26653
  • Zhang, P., Sun, Y., Hsu, H., Zhang, L., Zhang, Y., and Lee, M. Y. W. T.. 1998. The interdomain connector loop of human PCNA is involved in a direct interaction with human polymerase delta. J. Biol. Chem. 273:713–719

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.