20
Views
181
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Characterization of Schizosaccharomyces pombeHus1: a PCNA-Related Protein That Associates with Rad1 and Rad9

, , , , , , & show all
Pages 1254-1262 | Received 11 Aug 1999, Accepted 12 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Al-Khodairy, F., and Carr, A. M.. 1992. DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. EMBO J. 11:1343–1350
  • Aravind, L., Walker, D. R., and Koonin, E. V.. 1999. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res. 27:1223–1242
  • Bähler, J., Wu, J. Q., Longtine, M. S., Shah, N. G., McKenzie, A., Steever, A. B., Wach, A., Philippsen, P., and Pringle, J. R.. 1998. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951
  • Bentley, N. J., Holtzman, D. A., Flaggs, G., Keegan, K. S., DeMaggio, A., Ford, J. C., Hoekstra, M., and Carr, A. M.. 1996. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 15:6641–6651
  • Boddy, M. N., Furnari, B., Mondesert, O., and Russell, P.. 1998. Replication checkpoint enforced by kinases Cds1 and Chk1. Science 280:909–912
  • Bucher, P., Karplus, K., Moeri, N., and Hofmann, K.. 1996. A flexible motif search technique based on generalized profiles. Comput. Chem. 20:3–23
  • Carr, A. M.. 1997. Control of cell cycle arrest by the Mec1sc/Rad3sp DNA structure checkpoint pathway. Curr. Opin. Genet. Dev. 7:93–98
  • Caspari, T., and Carr, A. M.. 1999. DNA structure checkpoint pathways in Schizosaccharomyces pombe. Biochimie 81:173–181
  • Dahlen, M., Olsson, T., Kanter-Smoler, G., Ramne, A., and Sunnerhagen, P.. 1998. Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe. Mol. Biol. Cell 9:611–621
  • Davey, S., Han, C. S., Ramer, S. A., Klassen, J. C., Jacobson, A., Eisenberger, A., Hopkins, K. M., Lieberman, H. B., and Freyer, G. A.. 1998. Fission yeast rad12 regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Mol. Cell. Biol. 18:2721–2728
  • Davey, S., Nass, M. L., Ferrer, J. V., Sidik, K., Eisenberger, A., Mitchell, D. L., and Freyer, G. A.. 1997. The fission yeast UVDE DNA repair pathway is inducible. Nucleic Acids Res. 25:1002–1008
  • Edwards, R. J., Bentley, N. J., and Carr, A. M.. 1999. A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nat. Cell Biol. 1:393–398
  • Edwards, R. J., and Carr, A. M.. 1997. Analysis of radiation-sensitive mutants of fission yeast. Methods Enzymol. 283:471–494
  • Enoch, T., Carr, A. M., and Nurse, P.. 1992. Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev. 6:2035–2046
  • Frangioni, J. V., and Neel, B. G.. 1993. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal. Biochem. 210:179–187
  • Fukuda, M., Asano, S., Nakamura, T., Adachi, M., Yoshida, M., Yanagida, M., and Nishida, E.. 1997. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390:308–311
  • Furnari, B., Rhind, N., and Russell, P.. 1997. Cdc25 mitotic inducer targeted by Chk1 DNA damage checkpoint kinase. Science 277:1495–1497
  • Griffiths, D. J. F., Barbet, N. C., McCready, S., Lehmann, A. R., and Carr, A. M.. 1995. Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. EMBO J. 14:5812–5823
  • Hagan, I., Hayles, J., and Nurse, P.. 1988. Cloning and sequencing of the cyclin-related cdc13+ gene and a cytological study of its role in fission yeast mitosis. J. Cell Sci. 91:587–595
  • Harlow, E., and Lane, D.. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J.. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816
  • Hartley, K. O., Gell, D., Smith, G. C. M., Zhang, H., Divecha, N., Connelly, M. A., Admon, A., Lees-Miller, S. P., Anderson, C. W., and Jackson, S. P.. 1995. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82:849–856
  • Hartwell, L. H., and Kastan, M. B.. 1994. Cell cycle control and cancer. Science 266:1821–1828
  • Jonsson, Z. O., Hindges, R., and Hubscher, U.. 1998. Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J. 15:2412–2425
  • Kanter-Smoler, G., Knudsen, K. E., Jimenez, G., Sunnerhagen, P., and Subramani, S.. 1995. Separation of phenotypes in mutant alleles of the Schizosaccharomyces pombe cell-cycle checkpoint gene rad1+. Mol. Biol. Cell 6:1793–1805
  • Kondo, T., Matsumoto, K., and Sugimoto, K.. 1999. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Mol. Cell. Biol. 19:1136–1143
  • Kostrub, C., Knudsen, K., Subramani, S., and Enoch, T.. 1998. Hus1p, a conserved fission yeast checkpoint protein, interacts with Rad1p and is phosphorylated in response to DNA damage. EMBO J. 17:2055–2066
  • Kostrub, C. F., al-Khodairy, F., Ghazizadeh, H., Carr, A. M., and Enoch, T.. 1997. Molecular analysis of hus1+, a fission yeast gene required for S-M and DNA damage checkpoints. Mol. Gen. Genet. 254:389–399
  • Lindsay, H. D., Griffiths, D. J. F., Edwards, R. J., Christensen, P. U., Murray, J. M., Osman, F., Walworth, N., and Carr, A. M.. 1998. S-phase specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12:382–395
  • Lopez-Girona, A., Furnari, B., Mondesert, O., and Russell, P.. 1999. Nuclear localisation of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397:172–175
  • Martinho, R. G., Lindsay, H. D., Flaggs, G., DeMaggio, A., Hoekstra, M., Carr, A. M., and Bentley, N. J.. 1998. Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J. 17:7239–7249
  • Moreno, S., Klar, A., and Nurse, P.. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194:795–826
  • Murakami, H., and Okayama, H.. 1995. A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374:817–819
  • Murray, J. M., Lindsay, H. D., Munday, C. A., and Carr, A. M.. 1997. Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol. Cell. Biol. 17:6868–6875
  • O'Connell, M. J., Raleigh, J. M., Verkade, H. M., and Nurse, P.. 1997. Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J. 16:545–554
  • Oku, T., Ikeda, S., Sasaki, H., Fukuda, K., Morioka, H., Ohtsuka, E., Yoshikawa, H., and Tsurimoto, T.. 1998. Functional sites of human PCNA which interact with p21 (Cip1/Waf1), DNA polymerase delta and replication factor C. Genes Cells 3:357–369
  • Onel, K., Koff, A., Bennett, R. L., Unrau, P., and Holloman, W. K.. 1996. The REC1 gene of Ustilago maydis, which encodes a 3′-5′ exonuclease, couples DNA repair and completion of DNA synthesis to a mitotic checkpoint. Genetics 143:165–174
  • Parker, A. E., van de Weyer, I., Laus, M. C., Oostveen, I., Yon, J., Verhasselt, P., and Luyten, W. H.. 1998. A human homologue of the Schizosaccharomyces pombe rad1+ checkpoint gene encodes an exonuclease. J. Biol. Chem. 273:18332–18339
  • Rhind, N., Furnari, B., and Russell, P.. 1997. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 11:504–511
  • Rhind, N., and Russell, P.. 1998. Mitotic DNA damage and replication checkpoints in yeast. Curr. Opin. Cell Biol. 10:749–758
  • Rowley, R., Subramani, S., and Young, P. G.. 1992. Checkpoint controls in Schizosaccharomyces pombe: rad1. EMBO J. 11:1335–1342
  • Saka, Y., Esashi, F., Matsusaka, T., Mochida, S., and Yanagida, M.. 1997. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev. 11:3387–3400
  • Shimomura, T., Ando, S., Matsumoto, K., and Sugimoto, K.. 1998. Functional and physical interaction between Rad24 and Rfc5 in the yeast checkpoint pathways. Mol. Cell. Biol. 18:5485–5491
  • St Onge, R. P., Udell, C. M., Casselman, R., and Davey, S.. 1999. The human G2 checkpoint control protein hRAD9 is a nuclear phosphoprotein that forms complexes with hRad1 and hHus1. Mol. Biol. Cell 10:1985–1995
  • Thelen, M. P., Onel, K., and Holloman, W. K.. 1994. The REC1 gene of Ustilago maydis involved in the cellular response to DNA damage encodes an exonuclease. J. Biol. Chem. 269:747–754
  • Thelen, M. P., Venclovas, C., and Fidelis, K.. 1999. A sliding clamp model for the Rad1 family of cell cycle checkpoint proteins. Cell 19:769–770
  • Volkmer, E., and Karnitz, L. M.. 1999. Human homologs of Schizosaccharomyces pombe Rad1, Hus1, and Rad9 form a DNA damage-responsive protein complex. J. Biol. Chem. 274:567–570
  • Walworth, N., and Bernards, R.. 1996. rad-dependent responses of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271:353–356
  • Walworth, N., Davey, S., and Beach, D.. 1993. Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363:368–371
  • Weinert, T. A., and Hartwell, L. H.. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322
  • Willson, J., Wilson, S., Warr, N., and Watts, F. Z.. 1997. Isolation and characterization of the Schizosaccharomyces pombe rhp9 gene: a gene required for the DNA damage checkpoint but not the replication checkpoint. Nucleic Acids Res. 25:2138–2146
  • Zeng, Y., Forbes, K. C., Wu, Z., Moreno, S., Piwnica-Worms, H., and Enoch, T.. 1998. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395:507–510

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.