81
Views
282
CrossRef citations to date
0
Altmetric
Cell Growth and Development

NF-κB Activation by Double-Stranded-RNA-Activated Protein Kinase (PKR) Is Mediated through NF-κB-Inducing Kinase and IκB Kinase

, , &
Pages 1278-1290 | Received 07 Jul 1999, Accepted 18 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Balachandran, S., Kim, C. N., Yeh, W. C., Mak, T. W., Bhalla, K., and Barber, G. N.. 1998. Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J. 17:6888–6902
  • Baldwin, A. S.Jr.. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683
  • Barber, G. N., Wambach, M., Thompson, S., Jagus, R., and Katze, M. G.. 1995. Mutants of the RNA-dependent protein kinase (PKR) lacking double-stranded RNA binding domain I can act as transdominant inhibitors and induce malignant transformation. Mol. Cell. Biol. 15:3138–3146
  • Beg, A. A., Finco, T. S., Nantermet, P. V., Baldwin, A. S.Jr.. 1993. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκBα: a mechanism for NF-κB activation. Mol. Cell. Biol. 13:3301–3310
  • Beraud, C., Henzel, W. J., and Baeuerle, P. A.. 1999. Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-κB activation. Proc. Natl. Acad. Sci. USA 96:429–434
  • Brockman, J. A., Scherer, D. C., McKinsey, T. A., Hall, S. M., Qi, X., Lee, W. Y., and Ballard, D. W.. 1995. Coupling of a signal response domain in IκBκ to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15:2809–2818
  • Carpick, B. W., Graziano, V., Schneider, D., Maitra, R. K., Lee, X., and Williams, B. R. G.. 1997. Characterization of the solution complex between the interferon-induced, double-stranded RNA-activated protein kinase and HIV-I transactivating region RNA. J. Biol. Chem. 272:9510–9516
  • Chen, Z., Hagler, J., Palombella, V. J., Melandri, F., Scherer, D., Ballard, D., and Maniatis, T.. 1995. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597
  • Cheshire, J. L., Williams, B. R., Baldwin, A. S.Jr.. 1999. Involvement of double-stranded RNA-activated protein kinase in the synergistic activation of nuclear factor-κB by tumor necrosis factor-alpha and gamma-interferon in preneuronal cells. J. Biol. Chem. 274:4801–4806
  • Chiao, P. J., Miyamoto, S., and Verma, I. M.. 1994. Autoregulation of IκBα activity. Proc. Natl. Acad. Sci. USA 91:28–32
  • Chong, K. L., Feng, L., Schappert, K., Meurs, E., Donahue, T. F., Friesen, J. D., Hovanessian, A. G., and Williams, B. R.. 1992. Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J. 11:1553–1562
  • Clemens, M. J., and Elia, A.. 1997. The double-stranded RNA-dependent protein kinase PKR: structure and function. J. Interferon Cytokine Res. 17:503–524
  • Cohen, L., Henzel, W. J., and Baeuerle, P. A.. 1998. IKAP is a scaffold protein of the IκB kinase complex. Nature 395:292–296
  • Cuddihy, A. R., Li, S., Tam, N. W., Wong, A. H., Taya, Y., Abraham, N., Bell, J. C., and Koromilas, A. E.. 1999. Double-stranded-RNA-activated protein kinase PKR enhances transcriptional activation by tumor suppressor p53. Mol. Cell. Biol. 19:2475–2484
  • Cuddihy, A. R., Wong, A. H., Tam, N. W., Li, S., and Koromilas, A. E.. 1999. The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 18:2690–2702
  • de Haro, C., Mendez, R., and Santoyo, J.. 1996. The eIF-2α kinases and the control of protein synthesis. FASEB J. 10:1378–1387
  • Delhase, M., Hayakawa, M., Chen, Y., and Karin, M.. 1999. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 284:309–313
  • de Martin, R., Vanhove, B., Cheng, Q., Hofer, E., Csizmadia, V., Winkler, H., and Bach, F. H.. 1993. Cytokine-inducible expression in endothelial cells of an IκBα-like gene is regulated by NF-κB. EMBO J. 12:2773–2779
  • Der, S. D., and Lau, A. S.. 1995. Involvement of the double-stranded-RNA-dependent kinase PKR in interferon expression and interferon-mediated antiviral activity. Proc. Natl. Acad. Sci. USA 92:8841–8845
  • Der, S. D., Yang, Y. L., Weissmann, C., and Williams, B. R.. 1997. A double-stranded RNA-activated protein kinase-dependent pathway mediating stress-induced apoptosis. Proc. Natl. Acad. Sci. USA 94:3279–3283
  • DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., and Karin, M.. 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388:548–554
  • Donze, O., Dostie, J., and Sonenberg, N.. 1999. Regulatable expression of the interferon-induced double-stranded RNA dependent protein kinase PKR induces apoptosis and fas receptor expression. Virology 256:322–329
  • Elewaut, D., DiDonato, J. A., Kim, J. M., Truong, F., Eckmann, L., and Kagnoff, M. F.. 1999. NF-κB is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J. Immunol. 163:1457–1466
  • Finco, T. S., and Baldwin, A. S.. 1995. Mechanistic aspects of NF-κB regulation: the emerging role of phosphorylation and proteolysis. Immunity 3:263–272
  • Galabru, J., and Hovanessian, A. G.. 1985. Two interferon-induced proteins are involved in the protein kinase complex dependent on double-stranded RNA. Cell 43:685–694
  • Ghosh, S., May, M. J., and Kopp, E. B.. 1998. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225–260
  • Gusella, G. L., Musso, T., Rottschafer, S. E., Pulkki, K., and Varesio, L.. 1995. Potential requirement of a functional double-stranded RNA-dependent protein kinase (PKR) for the tumoricidal activation of macrophages by lipopolysaccharide or IFN-α/β but not IFN-γ. J. Immunol. 154:345–354
  • He, J., Olson, J. J., Ekstrand, A. J., Serbanescu, A., Yang, J., Offermann, M. K., and James, C. D.. 1996. Transfection of IFN-α in human glioblastoma cells and tumorigenicity in association with induction of PKR and OAS gene expression. J. Neurosurg. 85:1085–1090
  • Hovanessian, A. G.. 1989. The double stranded RNA-activated protein kinase induced by interferon: dsRNA-PK. J. Interferon Res. 9:641–647
  • Hu, Y., Baud, V., Delhase, M., Zhang, P., Deerinck, T., Ellisman, M., Johnson, R., and Karin, M.. 1999. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science 284:316–320
  • Imbert, V., Rupec, R. A., Livolsi, A., Pahl, H. L., Traenckner, E. B., Mueller-Dieckmann, C., Farahifar, D., Rossi, B., Auberger, P., Baeuerle, P. A., and Peyron, J. F.. 1996. Tyrosine phosphorylation of IκB-α activates NF-κB without proteolytic degradation of IκB-α. Cell 86:787–798
  • Ito, C. Y., Kazantsev, A. G., Baldwin, A. S.Jr.. 1994. Three NF-κB sites in the IκB-α promoter are required for induction of gene expression by TNF α. Nucleic Acids Res. 22:3787–3792
  • Katze, M. G.. 1995. Regulation of the interferon-induced PKR: can viruses cope? Trends Microbiol. 3:75–78
  • Kerr, I. M., Brown, R. E., and Hovanessian, A. G.. 1977. Nature of inhibitor of cell-free protein synthesis formed in response to interferon and double-stranded RNA. Nature 268:540–542
  • Kibler, K. V., Shors, T., Perkins, K. B., Zeman, C. C., Banaszak, M. P., Biesterfeldt, J., Langland, J. O., and Jacobs, B. L.. 1997. Double-stranded RNA is a trigger for apoptosis in vaccinia virus-infected cells. J. Virol. 71:1992–2003
  • Kirchhoff, S., Koromilas, A. E., Schaper, F., Grashoff, M., Sonenberg, N., and Hauser, H.. 1995. IRF-1 induced cell growth inhibition and interferon induction requires the activity of the protein kinase PKR. Oncogene 11:439–445
  • Koromilas, A. E., Roy, S., Barber, G. N., Katze, M. G., and Sonenberg, N.. 1992. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257:1685–1689
  • Krust, B., Galabru, J., and Hovanessian, A. G.. 1984. Further characterization of the protein kinase activity mediated by interferon in mouse and human cells. J. Biol. Chem. 259:8494–8498
  • Kumar, A., Haque, J., Lacoste, J., Hiscott, J., and Williams, B. R. G.. 1994. Double-stranded RNA-dependent protein kinase activates transcription factor NF-κB by phosphorylating IκB. Proc. Natl. Acad. Sci. USA 91:6288–6292
  • Kumar, A., Yang, Y. L., Flati, V., Der, S., Kadereit, S., Deb, A., Haque, J., Reis, L., Weissmann, C., and Williams, B. R.. 1997. Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-κB. EMBO J. 16:406–416
  • Leaman, D. W., Salvekar, A., Patel, R., Sen, G. C., and Stark, G. R.. 1998. A mutant cell line defective in response to double-stranded RNA and in regulating basal expression of interferon-stimulated genes. Proc. Natl. Acad. Sci. USA 95:9442–9447
  • Lee, F. S., Hagler, J., Chen, Z. J., and Maniatis, T.. 1997. Activation of the IκB α kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88:213–222
  • Lee, S. B., and Esteban, M.. 1994. The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 199:491–496
  • Lee, S. B., Melkova, Z., Yan, W., Williams, B. R., Hovanessian, A. G., and Esteban, M.. 1993. The interferon-induced double-stranded RNA-activated human p68 protein kinase potently inhibits protein synthesis in cultured cells. Virology 192:380–385
  • Lee, S. B., Rodriguez, D., Rodriguez, J. R., and Esteban, M.. 1997. The apoptosis pathway triggered by the interferon-induced protein kinase PKR requires the third basic domain, initiates upstream of Bcl-2, and involves ICE-like proteases. Virology 231:81–88
  • Li, N., and Karin, M.. 1998. Ionizing radiation and short wavelength UV activate NF-κB through two distinct mechanisms. Proc. Natl. Acad. Sci. USA 95:13012–13017
  • Li, Q., Van Antwerp, D., Mercurio, F., Lee, K. F., and Verma, I. M.. 1999. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284:321–325
  • Lin, X., Cunningham, E. T.Jr., Mu, Y., Geleziunas, R., and Greene, W. C.. 1999. The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-κB acting through the NF-κB-inducing kinase and IκB kinases. Immunity 10:271–280
  • Ling, L., Cao, Z., and Goeddel, D. V.. 1998. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc. Natl. Acad. Sci. USA 95:3792–3797
  • Malinin, N. L., Boldin, M. P., Kovalenko, A. V., and Wallach, D.. 1997. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385:540–544
  • Mercurio, F., Murray, B. W., Shevchenko, A., Bennett, B. L., Young, D. B., Li, J. W., Pascual, G., Motiwala, A., Zhu, H., Mann, M., and Manning, A. M.. 1999. IκB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol. Cell. Biol. 19:1526–1538
  • Mercurio, F., Zhu, H., Murray, B. W., Shevchenko, A., Bennett, B. L., Li, J., Young, D. B., Barbosa, M., Mann, M., Manning, A., and Rao, A.. 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866
  • Meurs, E., Chong, K., Galabru, J., Thomas, N. S., Kerr, I. M., Williams, B. R., and Hovanessian, A. G.. 1990. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62:379–390
  • Meurs, E. F., Galabru, J., Barber, G. N., Katze, M. G., and Hovanessian, A. G.. 1993. Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. USA 90:232–236
  • Meurs, E. F., Watanabe, Y., Kadereit, S., Barber, G. N., Katze, M. G., Chong, K., Williams, B. R., and Hovanessian, A. G.. 1992. Constitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth. J. Virol. 66:5804–5814
  • Miyamoto, S., and Verma, I. M.. 1995. Rel/NF-κB/IκB story. Adv. Cancer Res. 66:255–292
  • Mundschau, L. J., and Faller, D. V.. 1992. Oncogenic ras induces an inhibitor of double-stranded RNA-dependent eukaryotic initiation factor 2 alpha-kinase activation. J. Biol. Chem. 267:23092–23098
  • Mundschau, L. J., and Faller, D. V.. 1995. Platelet-derived growth factor signal transduction through the interferon-inducible kinase PKR. Immediate early gene induction. J. Biol. Chem. 270:3100–3106
  • Naumann, M., and Scheidereit, C.. 1994. Activation of NF-κB in vivo is regulated by multiple phosphorylations. EMBO J. 13:4597–4607
  • Nemoto, S., DiDonato, J. A., and Lin, A.. 1998. Coordinate regulation of IκB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-κB-inducing kinase. Mol. Cell. Biol. 18:7336–7343
  • Ninomiya-Tsuji, J., Kishimoto, K., Hiyama, A., Inoue, J., Cao, Z., and Matsumoto, K.. 1999. The kinase TAK1 can activate the NIK-I κB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252–256
  • O'Connell, M. A., Bennett, B. L., Mercurio, F., Manning, A. M., and Mackman, N.. 1998. Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J. Biol. Chem. 273:30410–30414
  • Ohmori, Y., Tebo, J., Nedospasov, S., and Hamilton, T. A.. 1994. κB binding activity in a murine macrophage-like cell line. Sequence-specific differences in κB binding and transcriptional activation functions. J. Biol. Chem. 269:17684–17690
  • Pain, V. M.. 1996. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem. 236:747–771
  • Petryshyn, R., Chen, J. J., Danley, L., and Matts, R. L.. 1996. Effect of interferon on protein translation during growth stages of 3T3 cells. Arch. Biochem. Biophys. 326:290–297
  • Petryshyn, R., Chen, J. J., and London, I. M.. 1988. Detection of activated double-stranded RNA-dependent protein kinase in 3T3-F442A cells. Proc. Natl. Acad. Sci. USA 85:1427–1431
  • Petryshyn, R., Chen, J. J., and London, I. M.. 1984. Growth-related expression of a double-stranded RNA-dependent protein kinase in 3T3 cells. J. Biol. Chem. 259:14736–14742
  • Raveh, T., Hovanessian, A. G., Meurs, E. F., Sonenberg, N., and Kimchi, A.. 1996. Double-stranded RNA-dependent protein kinase mediates c-Myc suppression induced by type I interferons. J. Biol. Chem. 271:25479–25484
  • Regnier, C. H., Song, H. Y., Gao, X., Goeddel, D. V., Cao, Z., and Rothe, M.. 1997. Identification and characterization of an IκB kinase. Cell 90:373–383
  • Rice, A. P., Duncan, R., Hershey, J. W., and Kerr, I. M.. 1985. Double-stranded RNA-dependent protein kinase and 2-5A system are both activated in interferon-treated, encephalomyocarditis virus-infected HeLa cells. J. Virol. 54:894–898
  • Romano, P. R., Green, S. R., Barber, G. N., Mathews, M. B., and Hinnebusch, A. G.. 1995. Structural requirements for double-stranded RNA binding, dimerization, and activation of the human eIF-2α kinase DAI in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:365–378
  • Rothwarf, D. M., Zandi, E., Natoli, G., and Karin, M.. 1998. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395:297–300
  • Sakurai, H., Miyoshi, H., Toriumi, W., and Sugita, T.. 1999. Functional interactions of transforming growth factor beta-activated kinase 1 with IκB kinases to stimulate NF-κB activation. J. Biol. Chem. 274:10641–10648
  • Salzberg, S., Mandelboim, M., Zalcberg, M., Shainberg, A., and Mandelbaum, M.. 1995. Interruption of myogenesis by transforming growth factor beta 1 or EGTA inhibits expression and activity of the myogenic-associated (2′-5′) oligoadenylate synthetase and PKR. Exp. Cell Res. 219:223–232
  • Samuel, C. E., Duncan, R., Knutson, G. S., and Hershey, J. W.. 1984. Mechanism of interferon action. Increased phosphorylation of protein synthesis initiation factor eIF-2α in interferon-treated, reovirus-infected mouse L929 fibroblasts in vitro and in vivo. J. Biol. Chem. 259:13451–13457
  • Schmitz, M. L., dos Santos Silva, M. A., and Baeuerle, P. A.. 1995. Transactivation domain 2 (TA2) of p65 NF-κB. Similarity to TA1 and phorbol ester-stimulated activity and phosphorylation in intact cells. J. Biol. Chem. 270:15576–15584
  • Shang, Y., Baumrucker, C. R., and Green, M. H.. 1998. c-myc is a major mediator of the synergistic growth inhibitory effects of retinoic acid and interferon in breast cancer cells. J. Biol. Chem. 273:30608–30613
  • Sizemore, N., Leung, S., and Stark, G. R.. 1999. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-κB p65/RelA subunit. Mol. Cell. Biol. 19:4798–4805
  • Song, H. Y., Regnier, C. H., Kirschning, C. J., Goeddel, D. V., and Rothe, M.. 1997. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-κB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc. Natl. Acad. Sci. USA 94:9792–9796
  • Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D.. 1998. How cells respond to interferons. Annu. Rev. Biochem. 67:227–264
  • Sun, S., Elwood, J., and Greene, W. C.. 1996. Both amino- and carboxyl-terminal sequences within IκBα regulate its inducible degradation. Mol. Cell. Biol. 16:1058–1065
  • Sun, S. C., Ganchi, P. A., Ballard, D. W., and Greene, W. C.. 1993. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259:1912–1915
  • Sylla, B. S., Hung, S. C., Davidson, D. M., Hatzivassiliou, E., Malinin, N. L., Wallach, D., Gilmore, T. D., Kieff, E., and Mosialos, G.. 1998. Epstein-Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-κB through a pathway that includes the NF-κB-inducing kinase and the IκB kinases IKKα and IKKβ. Proc. Natl. Acad. Sci. USA 95:10106–10111
  • Takeda, K., Takeuchi, O., Tsujimura, T., Itami, S., Adachi, O., Kawai, T., Sanjo, H., Yoshikawa, K., Terada, N., and Akira, S.. 1999. Limb and skin abnormalities in mice lacking IKKα. Science 284:313–316
  • Takizawa, T., Ohashi, K., and Nakanishi, Y.. 1996. Possible involvement of double-stranded RNA-activated protein kinase in cell death by influenza virus infection. J. Virol. 70:8128–8132
  • Thompson, J. E., Phillips, R. J., Erdjument-Bromage, H., Tempst, P., and Ghosh, S.. 1995. IκB-β regulates the persistent response in a biphasic activation of NF-κB. Cell 80:573–582
  • Traenckner, E. B., Pahl, H. L., Henkel, T., Schmidt, K. N., Wilk, S., and Baeuerle, P. A.. 1995. Phosphorylation of human IκB-α on serines 32 and 36 controls IκB-α proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14:2876–2883
  • Uehara, T., Miyawaki, T., Ohta, K., Tamaru, Y., Yokoi, T., Nakamura, S., and Taniguchi, N.. 1992. Apoptotic cell death of primed CD45RO+ T lymphocytes in Epstein-Barr virus-induced infectious mononucleosis. Blood 80:452–458
  • Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R., and Verma, I. M.. 1996. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274:787–789
  • Wada, N., Matsumura, M., Ohba, Y., Kobayashi, N., Takizawa, T., and Nakanishi, Y.. 1995. Transcription stimulation of the Fas-encoding gene by nuclear factor for interleukin-6 expression upon influenza virus infection. J. Biol. Chem. 270:18007–18012
  • Wang, C. Y., Mayo, M. W., Baldwin, A. S.Jr.. 1996. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274:784–787
  • Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., Baldwin, A. S.Jr.. 1998. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c. Science 281:1680–1683
  • Wang, D., Baldwin, A. S.Jr.. 1998. Activation of nuclear factor-κB-dependent transcription by tumor necrosis factor-alpha is mediated through phosphorylation of RelA/p65 on serine 529. J. Biol. Chem. 273:29411–29416
  • Whiteside, S. T., Ernst, M. K., LeBail, O., Laurent-Winter, C., Rice, N., and Israel, A.. 1995. N- and C-terminal sequences control degradation of MAD3/IκBα in response to inducers of NF-κB activity. Mol. Cell. Biol. 15:5339–5345
  • Whiteside, S. T., and Israel, A.. 1997. IκB proteins: structure, function and regulation. Semin. Cancer Biol. 8:75–82
  • Woronicz, J. D., Gao, X., Cao, Z., Rothe, M., and Goeddel, D. V.. 1997. IκB kinase-beta: NF-κB activation and complex formation with IκB kinase-alpha and NIK. Science 278:866–869
  • Yamaoka, S., Courtois, G., Bessia, C., Whiteside, S. T., Weil, R., Agou, F., Kirk, H. E., Kay, R. J., and Israel, A.. 1998. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93:1231–1240
  • Yang, Y. L., Reis, L. F., Pavlovic, J., Aguzzi, A., Schafer, R., Kumar, A., Williams, B. R., Aguet, M., and Weissmann, C.. 1995. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14:6095–6106
  • Yeung, M. C., Liu, J., and Lau, A. S.. 1996. An essential role for the interferon-inducible, double-stranded RNA-activated protein kinase PKR in the tumor necrosis factor-induced apoptosis in U937 cells. Proc. Natl. Acad. Sci. USA 93:12451–12455
  • Yin, M. J., Christerson, L. B., Yamamoto, Y., Kwak, Y. T., Xu, S., Mercurio, F., Barbosa, M., Cobb, M. H., and Gaynor, R. B.. 1998. HTLV-I Tax protein binds to MEKK1 to stimulate IκB kinase activity and NF-κB activation. Cell 93:875–884
  • Zamanian-Daryoush, M., Der, S. D., and Williams, B. R.. 1999. Cell cycle regulation of the double stranded RNA activated protein kinase, PKR. Oncogene 18:315–326
  • Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M., and Karin, M.. 1997. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ necessary for IκB phosphorylation and NF-κB activation. Cell 91:243–252
  • Zhao, Q., and Lee, F. S.. 1999. Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-κB through IκB kinase-alpha and IκB kinase-beta. J. Biol. Chem. 274:8355–8358
  • Zhong, H., Voll, R. E., and Ghosh, S.. 1998. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1:661–671

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.