9
Views
72
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The N-Terminal Domain of p73 Interacts with the CH1 Domain of p300/CREB Binding Protein and Mediates Transcriptional Activation and Apoptosis

, , , , , , & show all
Pages 1299-1310 | Received 01 Oct 1999, Accepted 15 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Agami, R., Blandino, G., Oren, M., and Shaul, Y.. 1999. Interaction of c-Abl and p73α and their collaboration to induce apoptosis. Nature 399:809–813
  • Avantaggiati, M. L., Carbone, M., Graessmann, A., Nakatani, Y., Howard, B., and Levine, A. C.. 1996. The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J. 15:2236–2248
  • Avantaggiati, M. L., Ogryzko, V., Gardner, K., Giordano, A., Levine, A. S., and Kelly, K.. 1997. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89:1175–1184
  • Arany, Z., Newsome, D., Oldread, E., Livingston, D. M., and Eckner, R.. 1995. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374:81–84
  • Bannister, A. J., and Kouzarides, T.. 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643
  • Bargonetti, J., Manfredi, J. J., Chen, X., Marshak, D. R., and Prives, C.. 1993. A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein. Genes Dev. 7:2565–2574
  • Bex, F., Yin, M. J., Burny, A., and Gaynor, R. B.. 1998. Differential transcriptional activation by human T-cell leukemia virus type 1 Tax mutants is mediated by distinct interactions with CREB binding protein and p300. Mol. Cell. Biol. 18:2392–2405
  • Bhattacjarua, S. R., Eclmer, Grossman, S., Oldread, E., Arany, Z., D'Andrea, A., and Livingston, D. M.. 1996. Cooperation of Stat2 and p300/CBP in signaling induced by interferon-alpha. Nature 383:344–347
  • Bian, J., and Sun, Y.. 1997. P53CP, a putative p53 competing protein that specifically binds to the consensus p53 DNA binding sites: a third member of the p53 family? Proc. Natl. Acad. Sci. USA 94:14753–14758
  • Buckbinder, L., Talbott, R., Valesco-Miguel, S., Takenaka, I., Faha, B., Seizinger, B. R., and Kley, N.. 1995. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377:646–649
  • Chakravarti, D., LaMorte, V. J., Nelson, M. C., Nakajima, T., Schulman, I. G., Juguilon, H., Monteminy, M., and Evans, R. M.. 1996. Role of CBP/p300 in nuclear receptor signaling. Nature 383:99–103
  • Cho, Y., Gorina, S., Jeffrey, P. D., and Pavietich, N. P.. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355
  • Chrivia, J. C., Kwok, R. P., Lamb, N., Hagiwara, M., Montminy, M. R., and Goodman, R. H.. 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859
  • Dignam, J. D., Lebovitz, R. M., and Roeder, R. G.. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489
  • Dobbelstein, M., Wienzek, S., Konig, C., and Roth, J.. 1999. Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Oncogene 18:2101–2106
  • Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A.Jr., Butel, J. S., and Bradley, A.. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221
  • Dulic, V., Kaufmann, W. K., Lees, S. J., Tisty, T. D., Lees, E., Harper, J. W., Elledge, S. J., and Reed, S. I.. 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023
  • Eckner, R., Ewen, M. E., Newsome, D., Gerdes, M., DeCaprio, J. A., Lawrence, J. B., and Livingston, D. M.. 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 7:869–884
  • El-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W., and Vogelstein, B.. 1992. Definition of a consensus binding site for p53. Nat. Genet. 1:45–49
  • El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B.. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825
  • Fields, S., and Jang, S. K.. 1990. Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049
  • Gong, J. G., Costanzo, A., Yang, H. Q., Melino, G., Kaelin, W. G.Jr., Levrero, M., and Wang, J. Y.. 1999. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399:806–809
  • Gottlieb, T. M., and Oren, M.. 1996. p53 in growth control and neoplasia. Biochim. Biophys. Acta Gene Struct. Expr. 1287:77–102
  • Grossman, S. R., Perez, M., Kung, A. L., Joseph, M., Mansur, C., Xiao, Z., Kumar, S., Howley, P. M., and Livingston, D. M.. 1998. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2:405–415
  • Gu, W., and Roeder, R. G.. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606
  • Gu, W., Shi, X. L., and Roeder, R. G.. 1997. Synergistic activation of transcription by CBP and p53. Nature 387:819–823
  • Harlow, E., and Lane, D.. 1988. Antibodies: a laboratory manual 519–522 Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Haupt, Y., Maya, R., Kazaza, A., and Oren, M.. 1997. Mdm2 promotes the rapid degradation of p53. Nature 387:296–299
  • Hermeking, H., Lengauer, C., Polyak, K., He, T., Zhang, L., Thiagalingam, S., Kinzler, K. W., and Vogelstein, B.. 1997. 14-3-3ς is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1:3–11
  • Hupp, T. R., and Lane, D. P.. 1994. Allosteric activation of latent p53 tetramers. Curr. Biol. 4:865–875
  • Jost, C. A., Marin, C. M., Kaelin, W. G.Jr.. 1997. p73 is a human p53-related protein that can induce apoptosis. Nature 389:191–194
  • Kadonaga, J. T.. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92:307–313
  • Kaghad, M., Bonnet, H., Yang, A., Creancier, L., Biscan, J., Valent, A., Minty, A., Chalon, P., Lelias, J., Dumont, X., Ferrara, P., McKeon, F., and Caput, D.. 1997. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819
  • Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S., Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G.. 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414
  • Kapoor, M., and Lozano, G.. 1998. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc. Natl. Acad. Sci. USA 95:2834–2837
  • Kastan, M. B., Zhan, Q., El-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., Fornace, A. J.Jr.. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597
  • Kawasaki, H., Ohkawa, J., Tanishige, N., Yoshinari, K., Murata, T., Yokoyama, K. K., and Taira, K.. 1996. Selection of the best target site for ribozyme-mediated cleavage within a fusion gene for adenovirus E1A-associated 300 kDa protein (p300) and luciferase. Nucleic Acids Res. 24:3010–3016
  • Kawasaki, H., Eckner, R., Yao, T.-P., Taira, K., Chiu, R., Livingston, D. M., and Yokoyama, K. K.. 1998. Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature 393:284–289
  • Kawasaki, H., Song, J., Eckner, R., Ugal, H., Chiu, R., Taira, K., Shi, Y., Jones, N., and Yokoyama, K. K.. 1998. p300 and ATF-2 are components of the DRF complex, which regulates retinoic acid- and E1A-mediated transcription of the c-jun gene in F9 cells. Genes Dev. 12:233–245
  • Kee, B. L., Arias, J., and Montminy, M. R.. 1996. Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator. J. Biol. Chem. 271:2373–2375
  • Keller, D., Zeng, X. Y., Li, X. R., Kapoor, M., Iordanov, M. S., Taya, Y., Lozano, G., Magun, B., and Lu, H.. 1999. The p38MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53. Biochem. Biophys. Res. Commun. 261:464–471
  • Ko, J. L., and Prives, C.. 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072
  • Kuo, M. H., Zhou, J., Jambeck, P., Churchill, M. E., and Allis, C. D.. 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12:627–639
  • Kwok, R. P. S., Lundblad, J. R., Chrivia, J. C., Richards, J. P., Bachinger, H. P., Brennan, R. G., Roberts, S. G. E., Green, M. R., and Goodman, R. H.. 1994. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223–227
  • Kubbutat, M. H., Jones, S. N., and Vousden, K. H.. 1997. Regulation of p53 stability by mdm2. Nature 387:299–303
  • Lee, J. S., See, R. H., Deng, T., and Shi, Y.. 1996. Adenovirus E1A downregulates c-Jun- and JunB-mediated transcription by targeting their coactivator p300. Mol. Cell. Biol. 16:4312–4326
  • Lee, J. S., Zhang, X., and Shi, Y.. 1995. Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. Genes Dev. 9:1188–1198
  • Levine, A. J.. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331
  • Levine, A. J., Chang, A., Dittmer, D., Notterman, D. A., Silver, A., Thorn, K., Welsh, D., and Wu, M.. 1994. The p53 tumor suppressor gene. J. Lab. Clin. Med. 124:817–823
  • Lewin, B.. 1990. Commitment and activation at pol II promoters: a tail of protein-protein interactions. Cell 61:1161–1164
  • Lill, N. L., Grossman, S. R., Ginsberg, D., DeCaprio, J., and Livingston, D. M.. 1997. Binding and modulation of p53 by p300/CBP coactivators. Nature 387:823–827
  • Lin, J., Chen, J., Elenbaas, B., and Levine, A. J.. 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to MDM2 and the adenovirus 5 E1B 55-kd protein. Genes Dev. 8:1235–1246
  • Liu, L., Scolnick, D. M., Trievel, R. C., Zhang, H. B., Marmorstein, R., Halazonetis, T. D., and Berger, S. L.. 1999. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. 19:1202–1209
  • Lu, H., and Levine, A. J.. 1995. Human TAF-31 is a transcriptional coactivator of the p53 protein. Proc. Natl. Acad. Sci. USA 92:5154–5158
  • Lu, H., Taya, Y., Ikeda, M., and Levine, A. J.. 1998. Phosphorylation of p53 at serine 389 is responsive uniquely to UV- but not to gamma- and etoposide-induced DNA damage. Proc. Natl. Acad. Sci. USA 95:6399–6402
  • Lundblad, J. R., Kwok, R. P. S., Laurance, M. E., Harter, M. L., and Goodman, R. H.. 1995. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional coactivator CBP. Nature 374:85–88
  • Marin, M. C., Jost, C. A., Irwin, M. S., DeCaprio, J. A., Caput, D., Kaelin, W. G.Jr.. 1998. Viral oncoproteins discriminate between p53 and the p53 homolog p73. Mol. Cell. Biol. 18:6316–6324
  • Mills, A. A., Zheng, B., Wang, X. J., Vogel, H., Roop, D. R., and Bradley, A.. 1999. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398:708–713
  • Miyashita, T., and Reed, J. C.. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299
  • Momand, J., Zambetti, G. P., Olson, D. C., George, D., and Levine, A. J.. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245
  • Nakajima, T., Uchida, C., Anderson, S. F., Lee, C. G., Hurwitz, J., Parvin, J. D., and Montminy, M. R.. 1997. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90:1107–1112
  • Ogryzko, V. V., Kotani, T., Zhang, X., Schiltz, R. L., Howard, T., Yang, X., Howard, B. H., Qin, Y., and Nakatani, Y.. 1998. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44
  • Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y.. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959
  • Oliner, J. D., Anderson, J. M., Hansen, S. K., Zhou, S., and Tjian, R.. 1996. SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. Genes Dev. 10:2903–2911
  • Osada, M., Ohba, M., Kawahara, C., Ishioka, C., Kanamaru, R., Katoh, I., Ikawa, Y., Nimura, Y., Nakagawara, A., Obinata, M., and Ikawa, S.. 1998. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat. Med. 4:839–843
  • Pavletich, N. P., Chambers, K. A., and Pabo, C. O.. 1993. The DNA binding domain of p53 contains the four conserved regions and the major mutation hotspots. Genes Dev. 7:2556–2564
  • Raycroft, L., Wu, H., and Lozano, G.. 1990. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051
  • Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C. W., and Appella, E.. 1997. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12:2831–2841
  • Schmale, H., and Bamberger, C.. 1997. A novel protein with strong homology to the tumor suppressor p53. Oncogene 15:1363–1367
  • Shi, Y., and Mello, C.. 1998. A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev. 12:943–955
  • Shieh, S., Ikeda, M., Taya, Y., and Prives, C.. 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334
  • Shikama, N., Lyon, L., and La Thangue, N. B.. 1997. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7:230–236
  • Siliciano, J. D., Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E., and Kastan, M. B.. 1998. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11:3471–3481
  • Struhl, K.. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 19:599–606
  • Thut, C. J., Chen, J. L., Klemin, R., and Tjian, R.. 1995. P53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267:100–104
  • Tokino, T., Thiagalingam, S., El-Deiry, W. S., Waldman, T., Kinzler, K. W., and Vogelstein, B.. 1994. p53 tagged sites from human genomic DNA. Hum. Mol. Genet. 3:1537–1542
  • Trink, B., Okami, K., Wu, L., Sriuranpong, V., Jen, J., and Sidransky, D.. 1998. A new human p53 homologue. Nat. Med. 4:747–748
  • Walker, K. K., and Levine, A. J.. 1996. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci. USA 93:15335–15340
  • Wang, L., Liu, L., and Berger, S. L.. 1998. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12:640–653
  • Wang, Y., Reed, M., Wang, P., Stenger, J. E., Mayr, G., Anderson, M. E., Schwedes, J. F., and Tegtmeyer, P.. 1993. p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Dev. 7:2575–2586
  • Whyte, P., Williamson, N. M., and Harlow, E.. 1989. Cellular targets for transformation by the adenovirus E1A proteins. Cell 56:67–75
  • Wu, X., Bayle, J. H., Olson, D., and Levine, A. J.. 1993. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132
  • Yang, A., Kaghad, M., Wang, Y., Gillett, E., Fleming, M. D., Dotsch, V., Andrews, N. C., Caput, D., and McKeon, F.. 1998. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2:305–316
  • Yang, A., Schweitzer, R., Sun, D., Kaghad, M., Walker, N., Bronson, R. T., Tabin, C., Sharpe, A., Caput, D., Crum, C., and McKeon, F.. 1999. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718
  • Yao, T. P., Ku, G., Zhou, N., Scully, R., and Livingston, D. M.. 1996. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl. Acad. Sci. USA 93:10626–10631
  • Yao, T. P., Oh, S. P., Fuchs, M., Zhou, N. D., Ch'ng, L. E., Newsome, D., Bronson, R. T., Li, E., Livingston, D. M., and Eckner, R.. 1998. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93:361–372
  • Yuan, W., Condorelli, G., Caruso, M., Feisani, A., and Giordano, A.. 1996. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271:9009–9013
  • Yuan, Z. M., Huang, Y., Ishiko, T., Nakada, S., Utsugisawa, T., Shioya, H., Utsugisawa, Y., Yokoyama, K., Weichselbaum, R., Shi, Y., and Kufe, D.. 1999. Role for p300 in stabilization of p53 in the response to DNA damage. J. Biol. Chem. 274:1883–1886
  • Yuan, Z. M., Shioya, H., Ishiko, T., Sun, X., Gu, J., Huang, Y. Y., Lu, H., Kharbanda, S., Weichselbaum, R., and Kufe, D.. 1999. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399:814–817
  • Zeng, X. Y., Levine, A. J., and Lu, H.. 1998. Non-p53 p53RE binding protein, a human transcription factor functionally analogous to p53. Proc. Natl. Acad. Sci. USA 95:6681–6686
  • Zeng, X. Y., Chen, L. H., Jost, C. A., Maya, R., Keller, D., Wang, X., Kaelin, W. C.Jr., Oren, M., Chen, J. D., and Lu, H.. 1999. MDM2 suppresses p73 function without promoting p73 degradation. Mol. Cell. Biol. 19:3257–3266

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.