3
Views
28
CrossRef citations to date
0
Altmetric
Gene Expression

Identification of a Novel Element Required for Processing of Intron-Encoded Box C/D Small Nucleolar RNAs in Saccharomyces cerevisiae

, &
Pages 1311-1320 | Received 17 Sep 1999, Accepted 17 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Amberg, D. C., Goldstein, A. L., and Cole, C. N.. 1992. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6:1173–1189
  • Bachellerie, J.-P., Michot, B., Nicoloso, M., Balakin, A., Ni, J., and Fournier, M. J.. 1995. Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends Biochem. Sci. 20:261–264
  • Bachellerie, J.-P., and Cavaillé, J.. 1997. Guiding ribose methylation of rRNA. Trends Biochem. Sci. 22:257–261
  • Balakin, A. G., Smith, L., and Fournier, M. J.. 1996. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86:823–834
  • Bortolin, M.-L., Ganot, P., and Kiss, T.. 1999. Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs. EMBO J. 18:457–469
  • Caffarelli, E., Arese, M., Santoro, B., Fragapane, P., and Bozzoni, I.. 1994. In vitro study of the processing of the intron-encoded U16 small nucleolar RNA in Xenopus laevis. Mol. Cell. Biol. 14:2966–2974
  • Caffarelli, E., Fatica, A., Prislei, S., De Gregorio, E., Fragapane, P., and Bozzoni, I.. 1996. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J. 15:1121–1131
  • Cavaillé, J., and Bachellerie, J.-P.. 1996. Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie 78:443–456
  • Cecconi, F., Mariottini, P., and Amaldi, F.. 1995. The Xenopus intron-encoded U17 snoRNA is produced by exonucleolytic processing of its precursor in oocytes. Nucleic Acids Res. 23:4670–4676
  • Chanfreau, G., Abou Elela, S., Ares, M.Jr., and Guthrie, C.. 1997. Alternative 3′-end processing of U5 snRNA by RNaseIII. Genes Dev. 11:2741–2751
  • Chanfreau, G., Legrain, P., and Jacquier, A.. 1998. Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. J. Mol. Biol. 284:975–988
  • Chanfreau, G., Rotondo, G., Legrain, P., and Jacquier, A.. 1998. Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1. EMBO J. 17:3726–3737
  • Chapman, K. B., and Boeke, J. D.. 1991. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65:483–492
  • Charpentier, B., and Rosbash, M.. 1996. Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly. RNA 2:509–522
  • Ganot, P., Bortolin, M.-L., and Kiss, T.. 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799–809
  • Ganot, J.-P., Caizergues-Ferrer, M., and Kiss, T.. 1997. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11:941–956
  • Goguel, V., and Rosbash, M.. 1993. Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast. Cell 72:893–901
  • Howe, K. J., Ares, M.Jr.. 1997. Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA. Proc. Natl. Acad. Sci. USA 94:12467–12472
  • Huang, G. M., Jarmolowski, A., Struck, J. C., and Fournier, M. J.. 1992. Accumulation of U14 small nuclear RNA in Saccharomyces cerevisiae requires box C, box D, and a 5′,3′-terminal stem. Mol. Cell. Biol. 12:4456–4463
  • Kiss, T., and Filipowicz, W.. 1995. Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. Genes Dev. 9:1411–1424
  • Kiss-László, Z., Henry, Y., Bachellerie, J.-P., Caizergues-Ferrer, M., and Kiss, T.. 1996. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077–1088
  • Kiss-László, Z., Henry, Y., and Kiss, T.. 1998. Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J. 17:797–807
  • Kranz, J. E., and Holm, C.. 1990. Cloning by function: an alternative approach for identifying yeast homologs of genes from other organisms. Proc. Natl. Acad. Sci. USA 87:6629–6633
  • Lange, T. S., Borovjagin, A., Maxwell, E. S., and Gerbi, S. A.. 1998. Conserved boxes C and D are essential nucleolar localisation elements of U14 and U8 snoRNAs. EMBO J. 17:3176–3187
  • Leader, D. J., Clark, G. P., Watters, J., Beven, A. F., Shaw, P. J., and Brown, J. W. S.. 1997. Clusters of multiple different small nucleolar RNA genes in plants are expressed as and processed from polycistronic pre-snoRNAs. EMBO J. 16:5742–5751
  • Leverette, R. D., Andrews, M. T., and Maxwell, E. S.. 1992. Mouse U14 snRNA is a processed intron of the cognate hsc70 heat shock pre-messenger RNA. Cell 71:1215–1221
  • Libri, D., Stutz, F., McCarthy, T., and Rosbash, M.. 1995. RNA structural patterns and splicing: molecular basis for an RNA-based enhancer. RNA 1:425–436
  • Maxwell, E. S., and Fournier, M. J.. 1995. The small nucleolar RNAs. Annu. Rev. Biochem. 35:897–934
  • Mumberg, D., Müller, R., and Funk, M.. 1994. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22:5767–5768
  • Newman, A.. 1987. Specific accessory sequences in Saccharomyces cerevisiae introns control assembly of pre-mRNAs into spliceosomes. EMBO J. 6:3833–3839
  • Ni, J., Tien, A. L., and Fournier, M. J.. 1997. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565–573
  • Nicoloso, M., Qu, L.-H., Michot, B., and Bachellerie, J.-P.. 1996. Intron-encoded antisense small nucleolar RNAs: the characterization of nine novel species points to their role as guides for the 2′-O-ribose methylation of rRNAs. J. Mol. Biol. 260:178–195
  • Ooi, S. L., Samarsky, D., Fournier, M. J., and Boeke, J. D.. 1998. Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA 4:1096–1110
  • Parker, R., and Patterson, B.. 1987. Architecture of fungal introns: implications for spliceosome assembly Molecular biology of RNA: new perspectives. Dudock, B., and Inouye, M. 133–149 Academic Press, Inc., New York, N.Y
  • Petfalski, E., Dandekar, T., Henry, Y., and Tollervey, D.. 1998. Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol. Cell. Biol. 18:1181–1189
  • Pikielny, C. W., and Rosbash, M.. 1985. mRNA splicing efficiency in yeast and the contribution of nonconserved sequences. Cell 41:119–126
  • Prislei, S., Michienzi, A., Presutti, C., Fragapane, P., and Bozzoni, I.. 1993. Two different snoRNAs are encoded in introns of amphibian and human L1 ribosomal protein genes. Nucleic Acids Res. 21:5824–5830
  • Prislei, S., Fatica, A., De Gregorio, E., Arese, M., Fragapane, P., Caffarelli, E., Presutti, C., and Bozzoni, I.. 1995. Self-cleaving motifs are found in close proximity to the sites utilized for U16 snoRNA processing. Gene 163:221–226
  • Qu, L.-H., Henras, A., Lu, Y.-J., Zhou, H., Zhou, W. X., Zhu, Y.-Q., Zhao, J., Henry, Y., Caizergues-Ferrer, M., and Bachellerie, J.-P.. 1999. Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast. Mol. Cell. Biol. 19:1144–1158
  • Samarsky, D. A., and Fournier, M. J.. 1998. Functional mapping of the U3 small nucleolar RNA from the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 18:3431–3444
  • Samarsky, D. A., Fournier, M. J., Singer, R. H., and Bertrand, E.. 1998. The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localisation. EMBO J. 17:3747–3757
  • Santoro, B., De Gregorio, E., Caffarelli, E., and Bozzoni, I.. 1994. RNA-protein interactions in the nuclei of Xenopus oocytes: complex formation and processing activity on the regulatory intron of ribosomal protein gene L1. Mol. Cell. Biol. 14:6975–6982
  • Smith, C. M., and Steitz, J. A.. 1997. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 89:669–672
  • Tollervey, D., and Kiss, T.. 1997. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol. 9:337–342
  • Tycowski, K. T., Shu, M. D., and Steitz, J. A.. 1993. A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. Genes Dev. 6:1120–1130
  • Tycowski, K. T., Shu, M. D., and Steitz, J. A.. 1996. A mammalian gene with introns instead of exons generating stable RNA products. Nature 379:464–466
  • Villa, T., Ceradini, F., Presutti, C., and Bozzoni, I.. 1998. Processing of the intron-encoded U18 small nucleolar RNA in the yeast Saccharomyces cerevisiae relies on both exo- and endonucleolytic activities. Mol. Cell. Biol. 18:3376–3383
  • Watkins, N. J., Leverette, R. D., Xia, L., Andrews, M. T., and Maxwell, E. S.. 1996. Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. RNA 2:118–133
  • Watkins, N. J., Newman, D. R., Kuhn, J. F., and Maxwell, E. S.. 1998. In vitro assembly of the mouse U14 snoRNP core complex and identification of a 65-kDa box C/D-binding protein. RNA 4:582–593
  • Weinstein, L. B., and Steitz, J. A.. 1999. Guided tours: from precursor snoRNA to functional snoRNP. Curr. Opin. Cell Biol. 11:378–384
  • Xia, L., Watkins, N. J., and Maxwell, E. S.. 1997. Identification of specific nucleotide sequences and structural elements required for intronic U14 snoRNA processing. RNA 3:17–26
  • Zuker, M.. 1994. Prediction of RNA secondary structure by energy minimization. Methods Mol. Biol. 25:267–294

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.