24
Views
12
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Novel TATA-Binding Protein-Binding Protein, ABT1, Activates Basal Transcription and Has a Yeast Homolog That Is Essential for Growth

, , , , , , & show all
Pages 1407-1418 | Received 21 Jun 1999, Accepted 22 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Auble, D. T., and Hahn, S.. 1993. An ATP-dependent inhibitor of TBP binding to DNA. Genes Dev. 7:844–856
  • Auble, D. T., Hansen, K. E., Mueller, C. G., Lane, W. S., Thorner, J., and Hahn, S.. 1994. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 8:1920–1934
  • Barlev, N. A., Candau, R., Wang, L., Darpino, P., Silverman, N., and Berger, S. L.. 1995. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270:19337–19344
  • Björklund, S., and Kim, Y.-J.. 1996. Mediator of transcriptional regulation. Trends Biochem. Sci. 21:335–337
  • Brou, C., Kuhn, A., Staub, A., Chaudhary, S., Grummt, I., Davidson, I., and Tora, L.. 1993. Sequence-specific transactivators counteract topoisomerase II-mediated inhibition of in vitro transcription by RNA polymerases I and II. Nucleic Acids Res. 21:4011–4018
  • Chang, M., and Jaehning, J. A.. 1997. A multiplicity of mediators: alternative forms of transcription complexes communicate with transcriptional regulators. Nucleic Acids Res. 25:4861–4865
  • Chen, J. L., Attardi, L. D., Verrijzer, C. P., Yokomori, K., and Tjian, R.. 1994. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79:93–105
  • Dikstein, R., Ruppert, S., and Tjian, R.. 1996. TAFII250 is a bipartite protein kinase that phosphorylates the basal transcription factor RAP74. Cell 84:781–790
  • Dynlacht, B. D., Hoey, T., and Tjian, R.. 1991. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66:563–576
  • Eisenmann, D. M., Arndt, K. M., Ricupero, S. L., Rooney, J. W., and Winston, F.. 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6:1319–1331
  • Farmer, G., Colgan, J., Nakatani, Y., Manley, J. L., and Prives, C.. 1996. Functional interaction between p53, the TATA-binding protein (TBP), and TBP-associated factors in vivo. Mol. Cell. Biol. 16:4295–4304
  • Friedman, A. D., Triezenberg, S. J., and McKnight, S. L.. 1988. Expression of a truncated viral trans-activator selectively impedes lytic infection by its cognate virus. Nature 335:452–454
  • Gasch, A., Hoffmann, A., Horikoshi, M., Roeder, R. G., and Chua, N. H.. 1990. Arabidopsis thaliana contains two genes for TFIID. Nature 346:390–394
  • Ge, H., and Roeder, R. G.. 1994. The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J. Biol. Chem. 269:17136–17140
  • Gill, G., and Ptashne, M.. 1987. Mutants of GAL4 protein altered in an activation function. Cell 51:121–126
  • Goodrich, J. A., Hoey, T., Thut, C. J., Admon, A., and Tjian, R.. 1993. Drosophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75:519–530
  • Goppelt, A., Stelzer, G., Lottspeich, F., and Meisterernst, M.. 1996. A mechanism for repression of class II gene transcription through specific binding of NC2 to TBP-promoter complexes via heterodimeric histone fold domains. EMBO J. 15:3105–3116
  • Hateboer, G., Timmers, H. T., Rustgi, A. K., Billaud, M., van't Veer, L. J., and Bernards, R.. 1993. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein. Proc. Natl. Acad. Sci. USA 90:8489–8493
  • Henry, N. L., Bushnell, D. A., and Kornberg, R. D.. 1996. A yeast transcriptional stimulatory protein similar to human PC4. J. Biol. Chem. 271:21842–21847
  • Hoey, T., Dynlacht, B. D., Peterson, M. G., Pugh, B. F., and Tjian, R.. 1990. Isolation and characterization of the Drosophila gene encoding the TATA box binding protein, TFIID. Cell 61:1179–1186
  • Hoey, T., Weinzierl, R. O., Gill, G., Chen, J. L., Dynlacht, B. D., and Tjian, R.. 1993. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72:247–260
  • Hoffmann, A., Horikoshi, M., Wang, C. K., Schroeder, S., Weil, P. A., and Roeder, R. G.. 1990. Cloning of the Schizosaccharomyces pombe TFIID gene reveals a strong conservation of functional domains present in Saccharomyces cerevisiae TFIID. Genes Dev. 4:1141–1148
  • Hoffmann, A., Sinn, E., Yamamoto, T., Wang, J., Roy, A., Horikoshi, M., and Roeder, R. G.. 1990. Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature 346:387–390
  • Hope, I. A., and Struhl, K.. 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46:885–894
  • Horikoshi, M., Wang, C. K., Fujii, H., Cromlish, J. A., Weil, P. A., and Roeder, R. G.. 1989. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box. Nature 341:299–303
  • Inostroza, J. A., Mermelstein, F. H., Ha, I., Lane, W. S., and Reinberg, D.. 1992. Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70:477–489
  • Jackson-Fisher, A. J., Chitikila, C., Mitra, M., and Pugh, B. F.. 1999. A role for TBP dimerization in preventing unregulated gene expression. Mol. Cell 3:717–727
  • Jayaraman, L., Moorthy, N. C., Murthy, K. G. K., Manley, J. L., and Prives, C.. 1998. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev. 12:462–472
  • Jiang, S.-W., and Eberhardt, N. L.. 1996. TEF-1 transrepression in Be Wo cells is mediated through interactions with the TATA-binding protein, TBP. J. Biol. Chem. 271:9510–9518
  • Kaiser, K., and Meisterernst, M.. 1996. The human general co-factors. Trends Biochem. Sci. 21:342–345
  • Kaiser, K., Stelzer, G., and Meisterernst, M.. 1995. The coactivator p15 (PC4) initiates transcriptional activation during TFIIA-TFIID-promoter complex formation. EMBO J. 14:3520–3527
  • Kao, C. C., Lieberman, P. M., Schmidt, M. C., Zhou, Q., Pei, R., and Berk, A. J.. 1990. Cloning of a transcriptionally active human TATA binding factor. Science 248:1646–1650
  • Kim, T. K., Zhao, Y., Ge, H., Bernstein, R., and Roeder, R. G.. 1995. TATA-binding protein residues implicated in a functional interplay between negative cofactor NC2 (Dr1) and general factors TFIIA and TFIIB. J. Biol. Chem. 270:10976–10981
  • Kim, Y.-J., Björklund, S., Li, Y., Sayre, M. H., and Kornberg, R. D.. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608
  • Knaus, R., Pollock, R., and Guarente, L.. 1996. Yeast SUB1 is a suppressor of TFIIB mutations and has homology to the human co-activator PC4. EMBO J. 15:1933–1940
  • Koleske, A. J., and Young, R. A.. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469
  • Kretzschmar, M., Meisterernst, M., and Roeder, R. G.. 1993. Identification of human DNA topoisomerase I as a cofactor for activator-dependent transcription by RNA polymerase II. Proc. Natl. Acad. Sci. USA 90:11508–11512
  • Lee, T. I., Wyrick, J. J., Koh, S. S., Jennings, E. G., Gadbois, E. L., and Young, R. A.. 1998. Interplay of positive and negative regulators in transcription initiation by RNA polymerase II holoenzyme. Mol. Cell. Biol. 18:4455–4462
  • Lee, T. I., and Young, R. A.. 1998. Regulation of gene expression by TBP-associated proteins. Genes Dev. 12:1398–1408
  • Maheswaran, S., Lee, H., and Sonenshein, G. E.. 1994. Intracellular association of the protein product of the c-myc oncogene with the TATA-binding protein. Mol. Cell. Biol. 14:1147–1152
  • Martinez, E., Ge, H., Tao, Y., Yuan, C.-X., Palhan, V., and Roeder, R. G.. 1998. Novel cofactors and TFIIA mediate functional core promoter selectivity by the human TAFII150-containing TFIID complex. Mol. Cell. Biol. 18:6571–6583
  • Meisterernst, M., and Roeder, R. G.. 1991. Family of proteins that interact with TFIID and regulate promoter activity. Cell 67:557–567
  • Merino, A., Madden, K. R., Lane, W. S., Champoux, J. J., and Reinberg, D.. 1993. DNA topoisomerase I is involved in both repression and activation of transcription. Nature 365:227–232
  • Mermelstein, F., Yeung, K., Cao, J., Inostroza, J. A., Erdjument-Bromage, H., Eagelson, K., Landsman, D., Levitt, P., Tempst, P., and Reinberg, D.. 1996. Requirement of a corepressor for Dr-1 mediated repression of transcription. Genes Dev. 10:1033–1048
  • Metz, R., Bannister, A. J., Sutherland, J. A., Hagemeier, C., O'Rourke, E. C., Cook, A., Bravo, R., and Kouzarides, T.. 1994. c-Fos-induced activation of a TATA-box-containing promoter involves direct contact with TATA-box-binding protein. Mol. Cell. Biol. 14:6021–6029
  • Mizzen, C. A., Yang, X.-J., Kokubo, T., Brownell, J. E., Bannister, A. J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S. L., Kouzarides, T., Nakatani, Y., and Allis, C. D.. 1996. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270
  • Moqtaderi, Z., Bai, Y., Poon, D., Weil, P. A., and Struhl, K.. 1996. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383:188–191
  • Oda, T., Kujovich, J., Reis, M., Newman, B., and Druker, B. J.. 1997. Identification and characterization of two novel SH2 domain-containing proteins from a yeast two hybrid screen with the ABL tyrosine kinase. Oncogene 15:1255–1262
  • Oliner, J. D., Pietenpol, J. A., Thiagalingam, S., Gyuris, J., Kinzler, K. W., and Vogelstein, B.. 1993. Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53. Nature 362:857–860
  • Pugh, B. F., and Tjian, R.. 1990. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61:1187–1197
  • Pugh, B. F., and Tjian, R.. 1991. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 5:1935–1945
  • Ransone, L. J., Kerr, L. D., Schmitt, M. J., Wamsley, P., and Verma, I. M.. 1993. The bZIP domains of Fos and Jun mediate a physical association with the TATA box-binding protein. Gene Expr. 3:37–48
  • Roeder, R. G.. 1996. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21:327–335
  • Sadowski, I., Ma, J., Triezenberg, S., and Ptashne, M.. 1988. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335:563–564
  • Saleh, A., Lang, V., Cook, R., and Brandl, C. J.. 1997. Identification of native complexes containing the yeast coactivator/repressor proteins NGG1/ADA3 and ADA2. J. Biol. Chem. 272:5571–5578
  • Sauer, F., and Tjian, R.. 1997. Mechanisms of transcriptional activation: differences and similarities between yeast, Drosophila, and man. Curr. Opin. Genet. Dev. 7:176–181
  • Sawadogo, M., and Roeder, R. G.. 1985. Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc. Natl. Acad. Sci. USA 82:4394–4398
  • Seto, E., Usheva, A., Zambetti, G. P., Momand, J., Horikoshi, N., Weinmann, R., Levine, A. J., and Shenk, T.. 1992. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 89:12028–12032
  • Shen, W.-C., and Green, M. R.. 1997. Yeast TAFII145 functions as a core promoter selectivity factor, not a general coactivator. Cell 90:615–624
  • Shykind, B. M., Kim, J., and Sharp, P. A.. 1995. Activation of the TFIID-TFIIA complex with HMG-2. Genes Dev. 9:1354–1365
  • Shykind, B. M., Kim, J., Stewart, L., Champoux, J. J., and Sharp, P. A.. 1997. Topoisomerase I enhances TFIID-TFIIA complex assembly during activation of transcription. Genes Dev. 11:397–407
  • Stelzer, G., Goppelt, A., Lottspeich, F., and Meisterernst, M.. 1994. Repression of basal transcription by HMG2 is counteracted by TFIIH-associated factors in an ATP-dependent process. Mol. Cell. Biol. 7:4712–4721
  • Taggart, A. K. P., and Pugh, B. F.. 1996. Dimerization of TFIID when not bound to DNA. Science 272:1331–1333
  • Truant, R., Xiao, H., Ingles, C. J., and Greenblatt, J.. 1993. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. Biol. Chem. 268:2284–2287
  • Tudyka, T., and Skerra, A.. 1997. Glutathione S-transferase can be used as a C-terminal, enzymatically active dimerization module for a recombinant protease inhibitor, and functionally secreted into the periplasm of Escherichia coli. Protein Sci. 6:2180–2187
  • Uemura, H., and Jigami, Y.. 1995. Mutations in GCR1, a transcriptional activator of Saccharomyces cerevisiae glycolytic genes, function as suppressors of gcr2 mutations. Genetics 139:511–521
  • Verrijzer, C. P., and Tjian, R.. 1996. TAFs mediate transcriptional activation and promoter selectivity. Trends Biochem. Sci. 21:338–342
  • Wach, A., Brachat, A., Pohlmann, R., and Philippsen, P.. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808
  • Wade, P. A., and Jaehning, J. A.. 1996. Transcriptional corepression in vitro: a Mot1p-associated form of TATA-binding protein is required for repression by Leu3p. Mol. Cell. Biol. 16:1641–1648
  • Weinzierl, R. O., Dynlacht, B. D., and Tjian, R.. 1993. Largest subunit of Drosophila transcription factor IID directs assembly of a complex containing TBP and a coactivator. Nature 362:511–577
  • Zappavigna, V., Falciola, M., Citterich, M., Mavilio, F., and Bianchi, M. E.. 1996. HMG1 interacts with HOX proteins and enhances DNA binding and transcriptional activation. EMBO J. 15:4981–4991
  • Zwilling, S., Koenig, H., and Wirth, T.. 1995. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J. 14:1198–1208

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.